返回

高中物理

首页
  • 问答题
    如图所示,某空间内存在着正交的匀强电场和匀强磁场,电场方向水平向右,磁场方向垂直于纸面向里.一段光滑绝缘的圆弧轨道AC固定在场中,圆弧所在平面与电场平行,圆弧的圆心为O,半径R=1.8m,连线OA在竖直方向上,圆弧所对应的圆心角θ=37°.现有一质量m=3.6×10-4kg、电荷量q=9.0×10-4C的带正电的小球(视为质点),以v0=4.0m/s的速度沿水平方向由A点射入圆弧轨道,一段时间后小球从C点离开圆弧轨道.小球离开圆弧轨道后在场中做匀速直线运动.不计空气阻力,sin37°=0.6,cos37°=0.8.求:
    (1)匀强电场场强E的大小;
    (2)小球刚射入圆弧轨道瞬间对轨道压力的大小.
    魔方格

    本题信息:物理问答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “如图所示,某空间内存在着正交的匀强电场和匀强磁场,电场方向水平向右,磁场方向垂直于纸面向里.一段光滑绝缘的圆弧轨道AC固定在场中,圆弧所在平面与电场...” 主要考查您对

向心力

牛顿第二定律

牛顿第三定律

动能定理

带电粒子在复合场中的运动

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 向心力
  • 牛顿第二定律
  • 牛顿第三定律
  • 动能定理
  • 带电粒子在复合场中的运动

向心力的定义:

在圆周运动中产生向心加速度的力。


向心力的特性:

1、向心力
总是指向圆心,产生向心加速度,向心力只改变线速度的方向,不改变速度的大小,大小,方向总是指向圆心(与线速度方向垂直),方向时刻在变化,是一个变力。向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供。
2、轻绳模型
Ⅰ、轻绳模型的特点:
①轻绳的质量和重力不计;
②可以任意弯曲,伸长形变不计,只能产生和承受沿绳方向的拉力;
③轻绳拉力的变化不需要时间,具有突变性。

Ⅱ、轻绳模型在圆周运动中的应用
小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题:
①临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力:

②小球能通过最高点的条件:(当时,绳子对球产生拉力)
③不能通过最高点的条件:(实际上小球还没有到最高点时,就脱离了轨道)
3、轻杆模型:
Ⅰ、轻杆模型的特点:
①轻杆的质量和重力不计;
②任意方向的形变不计,只能产生和承受各方向的拉力和压力;
③轻杆拉力和压力的变化不需要时间,具有突变性。

Ⅱ、轻杆模型在圆周运动中的应用
轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况:
①小球能通过最高点的临界条件:(N为支持力)
②当时,有(N为支持力)
③当时,有(N=0)
④当时,有(N为拉力)


知识点拨:
向心力是从力的作用效果来命名的,因为它产生指向圆心的加速度,所以称它为向心力。它不是具有确定性质的某种类型的力。相反,任何性质的力都可以作为向心力。实际上它可是某种性质的一个力,或某个力的分力,还可以是几个不同性质的力沿着半径指向圆心的合外力。对一个物体进行受力分析的时候,是不需要画向心力的,向心力是效果力。


知识拓展:
对于向心力的理解,同学们可以切身的体会一下。两个同学手拉手,甲同学原地,乙同学绕着甲同学转,甲同学给乙同学的拉力就是向心力,当拉力大于向心力的时候,乙同学向心(甲同学)运动,当拉力小于向心力的时候,乙同学做离心运动。

内容:

物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F=kma。在国际单位制中,k=1,上式简化为F=ma。牛顿这个单位就是根据牛顿第二定律定义的:使质量是1kg的物体产生1m/s2加速度的力,叫做1N(kg·m/s2=N)。

对牛顿第二定律的理解:

①模型性
牛顿第二定律的研究对象只能是质点模型或可看成质点模型的物体。
②因果性
力是产生加速度的原因,质量是物体惯性大小的量度,物体的加速度是力这一外因和质量这一内因共同作用的结果。
③矢量性
合外力的方向决定了加速度的方向,合外力方向变,加速度方向变,加速度方向与合外力方向一致。其实牛顿第二定律的表达形式就是矢量式。
④瞬时性
加速度与合外力是瞬时对应关系,它们同生、同灭、同变化。
⑤同一性(同体性)
中各物理量均指同一个研究对象。因此应用牛顿第二定律解题时,首先要处理好的问题是研究对象的选择与确定。
⑥相对性
中,a是相对于惯性系的而不是相对于非惯性系的,即a是相对于没有加速度参照系的。
⑦独立性
F产生的加速度a是物体的总加速度,根据矢量的合成与分解,则有物体在x方向的加速度ax;物体在y方向的合外力产生y方向的加速度ay。牛顿第二定律分量式为:
⑧局限性(适用范围)
牛顿第二定律只能解决物体的低速运动问题,不能解决物体的高速运动问题,只适用于宏观物体,不适用与微观粒子。
牛顿第二定律的应用:

1.应用牛顿第二定律解题的步骤:
(1)明确研究对象。可以以某一个质点作为研究对象,也可以以几个质点组成的质点组作为研究对象。设每个质点的质量为mi,对应的加速度为ai,则有:F合=
对这个结论可以这样理解:先分别以质点组中的每个质点为研究对象用牛顿第二定律:,将以上各式等号左、右分别相加,其中左边所有力中,凡属于系统内力的,总是成对出现并且大小相等方向相反,其矢量和必为零,所以最后得到的是该质点组所受的所有外力之和,即合外力F。。
(2)对研究对象进行受力分析,同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边表示出来。
(3)若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个或三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。
(4)当研究对象在研究过程的小同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。
2.两种分析动力学问题的方法:
(1)合成法分析动力学问题若物体只受两个力作用而产生加速度时,根据牛顿第二定律可知,利用平行四边形定则求出的两个力的合力方向就是加速度方向。特别是两个力互相垂直或相等时,应用力的合成法比较简单。
(2)正交分解法分析动力学问题当物体受到两个以上的力作用而产生加速度时,常用正交分解法解题。通常是分解力,但在有些情况下分解加速度更简单。
①分解力:一般将物体受到的各个力沿加速度方向和垂直于加速度方向分解,则:(沿加速度方向),(垂直于加速度方向)。
②分解加速度:当物体受到的力相互垂直时,沿这两个相互垂直的方向分解加速度,再应用牛顿第二定律列方程求解,有时更简单。具体问题中要分解力还是分解加速度需要具体分析,要以尽量减少被分解的量,尽量不分解待求的量为原则。
3.应用牛顿第二定律解决的两类问题:
(1)已知物体的受力情况,求解物体的运动情况解这类题目,一般是应用牛顿运动定律求出物体的加速度,再根据物体的初始条件,应用运动学公式,求出物体运动的情况,即求出物体在任意时刻的位置、速度及运动轨迹。流程图如下:

(2)已知物体的运动情况,求解物体的受力情况解这类题目,一般是应用运动学公式求出物体的加速度,再应用牛顿第二定律求出物体所受的合外力,进而求出物体所受的其他外力。流程图如下:

可以看出,在这两类基本问题中,应用到牛顿第二定律和运动学公式,而它们中间联系的纽带是加速度,所以求解这两类问题必须先求解物体的加速度。
知识扩展:

1.惯性系与非惯性系:牛顿运动定律成立的参考系,称为惯性参考系,简称惯性系。牛顿运动定律不成立的参考系,称为非惯性系。
2.关于a、△v、v与F的关系
(1)a与F有必然的瞬时的关系F为0,则a为0; F不为0,则a不为0,且大小为a=F/m。F改变,则a 立即改变,a和F之间是瞬时的对应关系,同时存在,同时消失.同时改变。
(2)△v(速度的改变量)与F有必然的但不是瞬时的联系 F为0,则△v为0;F不,0,并不能说明△v就一定不为0,因为,F不为0,而t=0,则△v=0,物体受合外力作用要有一段时间的积累,才能使速度改变。
(3)v(瞬时速度)与F无必然的联系 F为0时,物体可做匀速直线运动,v不为0;F不为0时,v可以为0,例如竖直上抛到达最高点时。
牛顿第三定律:

1.定律内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。
2.表达式,负号表示方向相反。
3.意义揭示了力的作用的相互性,即两个物体间只要有作用就必然会出现一对作用力和反作用力。
4.一对相互作用力的特点:
 
5.适用范围牛顿第三定律不仅适用于固体间的相互作用,也同样适用于液体和气体间的相互作用,而且跟物体的运动状态无关。
利用牛顿第三定律转换研究对象:

两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上,这就是牛顿第三定律。它揭示了两个物体之间作用力与反作用力的关系,这种关系与物体处于何种运动状态以及物体间的作用力是否变化均无关。物理解题时首先要进行受力分析,而牛顿第三定律研究的是两个物体之间作用力与反作用力的关系,冈此在某一外力不易确定甚至不能确定而需要转换研究对象进行受力分析时,必须用到牛顿第三定律,它是联系各力之间关系的桥梁。

动能定理:


动能定理的应用方法技巧:

 1.应用动能定理解题的基本思路
(1)选取研究对象,明确并分析运动过程。
(2)分析受力及各力做功的情况,求出总功:
 
(3)明确过程始、末状态的动能
(4)列方程,必要时注意分析题目潜在的条件,列辅助方程进行求解。
2.应用动能定理应注意的几个问题
(1)明确研究对象和研究过程,找出始末状态的速度。
(2)要对物体正确地进行受力分析,明确各力做功的大小及正负情况(待求的功除外)。
(3)有些力在物体运动过程中不是始终存在的。若物体运动过程中包括几个阶段,物体在不同阶段内的受力情况不同,在考虑外力做功时需根据情况区分对待。
3.几种应用动能定理的典型情景
(1)应用动能定理求路程在多阶段或往返运动中,如果摩擦力或介质阻力大小不变,方向与速度方向关系恒相反,则在整个过程中克服摩擦力或介质阻力所做的功等于力与路程的乘积,从而可将物体在摩擦力或介质阻力作用下通过的路程与动能定理联系起来。
(2)应用动能定理求解多过程问题物体在某个运动过程中包含几个运动性质不同的小过程(如加速、减速的过程),此时可以分段考虑,也可以对全过程考虑,但如能对整个过程根据动能定理列式求解,则可以使问题简化。根据题意灵活地选取研究过程,可以使问题变得简单。有时取全过程简单,有时取某一阶段简单。原则是尽量使做功的力减少,各个力的功计算方便,或使初、未动能等于零。
(3)用动能定理求变力的功变力的功无法用公式直接求解,有时该力也不是均匀变化的,无法用高中知识表达平均力,此时可以考虑用动能定理间接求解。涉及功、能的极值问题在涉及功、能的极值问题中,有些极值的形成是南运动形式的临界状态造成的。如竖直平面内圆周运动的最高点、平抛运动等。有些极值的形成是由题设条件造成的。在解决涉及功、能的极值问题时,一种思路是分析运动形式的临界状态,将临界条件转化为物理方程来求解;另一种思路是将运动过程的方程解析式化,利用数学方法求极值。


知识拓展:

 1.总功的计算物体受到多个外力作用时,计算合外力的功,一般有如下三种方法:
(1)先由力的合成与分解法或根据牛顿第二定律求出合力,然后由计算。采用此法计算合力的总功时,一是要求各力同时作用在物体上。二是要求合外力是恒力。
(2)由计算各个力对物体做的功,然后将各个外力所做的功求代数和。当多阶段运动过程中不同阶段物体所受外力不同,即外力分阶段作用在物体上时常用此法求外力的总功。
(3)外力做的总功等于物体动能的变化量,在物体初、末状态已知的情况下可考虑从动能变化量来确定合外力做的功。
2.系统动能定理
动能定理实质上是一个质点的功能关系,是针对单体或可看做单个物体的物体系而言的。所谓能看成单个物体的物体系,简单来说就是物体系内各物体之间的相对位置不变,从而物体系的各内力做功之和为零.物体系的动能变化就取决于所有外力做的总功了。
但是对于不能看成单个物体的物体系或不能看成质点的物体,可将其看成是由大量质点组成的质点系,对质点系组成的系统应用动能定理时,就不能仅考虑外力的作用,还需考虑内力所做的功。即:

如人在从地面上竖直跳起的过程中,只受到了重力、地面支持力两个力的作用,而人从下蹲状态到离开地面的过程中,支持力不对人做功,重力对人做负功,但人的动能增加了,原因就在于此过程中人不能被看成单一的质点,人体内肌肉、骨骼之间的内力对人也做功。再如光滑水平面上由静止释放两带异种电荷的小球,对两小球组成的系统来说,没有外力对它们做功,但它们的动能却增加了,原因也在于它们的内力对它们做了功。
3.动能、动能的变化与动能定理的比较:


复合场:

同时存在电场和磁场的区域,同时存在磁场和重力场的区域,同时存在电场、磁场和重力的区域,都叫做叠加场,也称为复合场。三种场力的特点:
①重力的大小为mg,方向竖直向下。重力做功与路径无关,其数值除与带电粒子的质量有关外,还与始、终位置的高度差有关。
②电场力的大小为qE,方向与电场强度E及带电粒子所带电荷的性质有关。电场力做功与路径无关,其数值除与带电粒子的电荷量有关外,还与始、终位置的电势差有关。
③洛伦兹力的大小跟速度与磁场方向的夹角有关,当带电粒子的速度与磁场方向平行时,F=0;当带电粒子的速度与磁场方向垂直时,F=qvB。洛伦兹力的方向垂直于速度v和磁感应强度B所决定的平面。无论带电粒子做什么运动,洛伦兹力都不做功。
注:注意:电子、质子、α粒子、离子等微观粒子在叠加场中运动时,一般都不计重力。但质量较大的质点(如带电尘粒)在叠加场中运动时,不能忽略重力。

无约束情景下带电粒子在匀强复合场中的常见运动形式:



带电粒子在电磁组合场中运动时的处理方法:

1.电磁组合场
电磁组合场是指由电场和磁场组合而成的场,在空间同一区域只有电场或只有磁场,在不同区域中有不同的场。
2.组合场中带电粒子的运动
带电粒子在电场内可做加速直线运动、减速直线运动、类平抛运动、类斜抛运动,需要根据粒子进入电场时的速度方向、所受电场力,再南力和运动的关系来判定其运动形式。
粒子在匀强磁场中可以做直线运动,也可以做匀速圆周运动和螺旋运动,但在高中阶段通常涉及的是带电粒子所做的匀速圆周运动,通常需要确定粒子在磁场内做圆周运动进出磁场时的位置、圆心的位置、转过的圆心角、运动的时间等。
在电磁组合场问题中,需要通过连接点的速度将相邻区域内粒子的运动联系起来,粒子在无场区域内是做匀速直线运动的。解决此类问题的关键之一是画好运动轨迹示意图。

粒子在正交电磁场中做一般曲线运动的处理方法:

如图所示,一带正电的粒子从静止开始运动,所受洛伦兹力是一变力,粒子所做的运动是一变速曲线运动,若用动力学方法来处理其运动时,可将其运动进行如下分解:

 ①初速度的分解
因粒子初速度为零,可将初速度分解为水平向左和水平向右的两等大的初速度,令其大小满足
②受力分析按上述方法将初速度分解后,粒子在初始状态下所受外力如图所示。
 
③运动的分解将粒子向右的分速度,电场力,向上的洛伦兹力分配到一个分运动中,则此分运动中因,应是以速度所做的匀速运动。
将另一向左的分速度,向下的洛伦兹力分配到一个分运动中,则此分运动必是沿逆时针方向的匀速圆周运动。
④运动的合成
粒子所做的运动可以看成是水平向右的匀速直线运动与逆时针方向的匀速圆周运动的合运动。
a.运动轨迹
如图所示,
粒子运动轨迹与沿天花板匀速滚动的轮上某一定点的运动轨迹相同,即数学上所谓的滚轮线。
b.电场强度方向上的最大位移:
由两分运动可知,水平方向上的分运动不引起竖直方向上的位移,竖直方向上的最大位移等于匀速圆周分运动的直径:


可得
c.粒子的最大速率
由运动的合成可知,当匀速圆周分运动中粒子旋转到最低点时,两分运动的速度方向一致,此时粒子的速度达到最大:

解决复合场中粒子运动问题的思路:

解决电场、磁场、重力场中粒子的运动问题的方法可按以下思路进行。
(1)正确进行受力分析,除重力、弹力、摩擦力外,要特别注意电场力和磁场力的分析。
①受力分析的顺序:先场力(包括重力、电场力、磁场力),后弹力,再摩擦力等。
②重力、电场力与物体的运动速度无关,南质量决定重力的大小,由电荷量、场强决定电场力;但洛伦兹力的大小与粒子的速度有关,方向还与电荷的性质有关,所以必须充分注意到这一点。
(2)正确进行物体的运动状态分析,找出物体的速度、位置及变化,分清运动过程,如果出现临界状态,要分析临界条件。
(3)恰当选用解决力学问题的方法
①牛顿运动定律及运动学公式(只适用于匀变速运动)。
②用能量观点分析,包括动能定理和机械能(或能量)守恒定律。注意:不论带电体的运动状态如何,洛伦兹力永远不做功。
③合外力不断变化时,往往会出现临界状态,这时应以题中的“最大”、“恰好”等词语为突破口,挖掘隐含条件,列方程求解。
(4)注意无约束下的两种特殊运动形式
①受到洛伦兹力的带电粒子做直线运动时,所做直线运动必是匀速直线运动,所受合力必为零。
②在正交的匀强电场和匀强磁场组成的复合场中做匀速圆周运动的粒子,所受恒力的合力必为零。


发现相似题
与“如图所示,某空间内存在着正交的匀强电场和匀强磁场,电场方...”考查相似的试题有: