返回

高中物理

首页
  • 多选题
    以下是必修1课本中四幅插图,关于这四幅插图下列说法正确的是(  )

    魔方格
    A.甲图中学生从如图姿势起立到直立站于体重计的过程中,体重计的示数先减少后增加
    B.乙图中运动员推开冰壶后,冰壶在冰面运动时受到的阻力很小,可以在较长时间内保持运动速度的大小和方向不变
    C.丙图中赛车的质量不很大,却安装着强大的发动机,可以获得很大的加速度
    D.丁图中高大的桥要造很长的引桥,从而减小桥面的坡度,来增大车辆重力沿桥面方向的分力,保证行车方便与安全

    本题信息:物理多选题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “以下是必修1课本中四幅插图,关于这四幅插图下列说法正确的是( )A.甲图中学生从如图姿势起立到直立站于体重计的过程中,体重计的示数先减少后增加B.乙图...” 主要考查您对

力的合成

惯性

超重

失重

牛顿第二定律

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 力的合成
  • 惯性
  • 超重
  • 失重
  • 牛顿第二定律
合力与分力:

当一个物体受到几个力的共同作用时,我们常常可以求出这样一个力,这个力产生的效果跟原来几个力的共同效果相同,这个力就叫做那几个力的合力,原来的几个力叫做这个力的分力。
①合力与分力是针对同一受力物体而言的。
②一个力之所以是其他几个力的合力,或者其他几个力之所以是这个力的分力,是冈为这一个力的作用效果与其他几个力共同作用的效果相当,合力与分力之间的关系是一种等效替代的关系。
③合力可能大于任何一个分力,也可能小于任何一个分力,也可能介于两个分力之间。
④如果两个分力的大小不变,夹角越大,合力就越小;夹角越小,合力就越大。
⑤两个大小一定的力F1、F2,其合力的大小范围


力的运算法则:

1.平行四边形定则
作用在同一点的两个互成角度的力的合力,不等于两分力的代数和,而是遵循平行四边形定则。如果以表示两个共点力F1和F2的线段为邻边作平行四边形,那么合力F的大小和方向就可以用这两个邻边之间的对角线表示,这叫做力的平行四边形定则,如图所示。

2.三角形定则和多边形定则如图(a)所示,两力F1、F2合成为F的平行四边形定则,可演变为(b)图,我们将(b)图称为三角形定则合成图,即将两分力F1、F2首尾相接,则F就是由F,的尾端指向F2的首端的有向线段所表示的力。

如果是多个力合成,则由三角形定则合成推广可得到多边形定则,如图为三个力F1,F2、F3的合成图,F 为其合力。


惯性:

1.定义:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性。牛顿第一定律又叫惯性定律。
2.惯性的性质:
(1)惯性是物体的固有属性:一切物体都具有惯性。
(2)惯性与运动状态无关:不论物体处于怎样的运动状态,惯性总是存在的。当物体本来静止时,它一直 “想”保持这种静止状态。当物体运动时,它一直“想” 以那一时刻的速度做匀速直线运动。
(3)惯性与是否受力无关。
3.惯性的表现形式:
惯性的具体表现形式有两种:
①当物体不受外力或所受合外力为零时,惯性表现为保持原来的运动状态不变。
②当物体受到外力作用时,惯性表现为改变运动状态的难易程度,物体惯性越大,它的运动状态越难改变。
4.惯性的量度:
惯性的大小与物体运动的速度无关,与物体是否受力无关,仅与质量有关,质量是物体惯性大小的唯一量度。质量大的物体所具有的惯性大,质量小的物体所具有的惯性小。
5.惯性与质量:
质量是物体惯性大小的唯一量度,一个物体惯性的大小意味着改变物体运动状态的难易程度。对质量的理解:
(1)从物质角度理解:质量为物体所含物质的多少:
(2)从惯性角度理解:质量是决定物体惯性大小的唯一因素。

惯性大小的判定方法:

惯性是物体的固有属性,与物体的运动情况及受力情况无关,质量是惯性大小的唯一量度。有的同学总是认为“惯性与速度有关,物体的运动速度大惯性就大,速度小惯性就小”。理由是物体的速度大时不容易停下来,速度小时就容易停下来。这说明这部分同学没能将“运动状态改变的难易程度”与“物体从运动到静止的时间长短”区分开来。事实上,要比较物体运动状态变化的难与易,不仅要考虑物体速度变化的快与慢,还要考虑引起运动状态变化的外因——外力。具体来说有两种方法:一是外力相同时比较运动状态变化的快慢;二是在运动状态变化快慢相同的情况下比较所需外力的大小。对于质量相同的物体,无论其速度大小如何,在相同阻力的情况下,相同时间内速度变化量是相同的,这说明改变它们运动状态的难易程度是相同的。所以它们的惯性相同,与它们的速度无关。
知识拓展:

关于惯性观点的辨析:

错误观点:1:物体惯性的大小与物体的受力情况、运动情况、所处位置有关。 惯性是物体本身想要保持运动状态不变的特性,它是物体本身的固有属性,与物体的受力情况、运动情况、所处位置等无关。惯性的大小用质量来量度。不同质量的物体的惯性不同,它们保持状态不变的“本领”不同,质量越大的物体,其状态变化越困难,说明它保持状态不变的“本领”越强,它的惯性越大。

错误观点2:惯性是一种力。运动不需要力来维持,但当有力对物体作用时,力将“迫使”其改变运动状态。这时惯性表现为:若要物体持续地改变运动状态,就必须持续地对物体施加力的作用,一旦某时刻失去力的作用,物体马上保持此时的运动状态不再改变。因此惯性不是力,保持运动状态是物体的本能。“物体受到惯性力”、“由于惯性的作用”、“产生惯性”、“克服惯性”、“消除惯性”等说法是不正确的。

错误观点3:惯性就是惯性定律。惯性是一切物体都具有的固有属性,而惯性定律是物体不受外力作用时所遵守的一条规律。

错误观点4:物体的速度越大.物体的惯性越大。惯性是物体本身的固有属性,与物体的运动情况无关。有的同学认为“惯性与物体的运动速度有关,速度大,惯性就大,速度小,惯性就小”。其理由是物体运动速度大时不容易停下来,运动速度小时就容易停下来,这种认识是错误的。产生这种错误认识的原因是没有正确理解“惯性大小表示物体运动状态改变的难易程度”这句话。事实上,在受力情况完全相同时,质量相同的物体,在任意相同的时间内,速度的变化量是相同的。所以质量是惯性大小的唯一量度。

超重:

物体有向上的加速度(向上加速运动时或向下减速运动)称物体处于超重。处于超重的物体对支持面的压力FN(或对悬挂物的拉力)大于物体的重力mg,即FN=mg+ma。


超重和失重:


失重:

物体有向下的加速度(向下加速运动或向上减速运动)称物体处于失重。处于失重的物体对支持面的压力FN(或对悬挂物的拉力)小于物体的重力mg,即FN=mg-ma。

完全失重:

当a=g时FN=0,物体处于完全失重。在完全失重状态下,平常由重力产生的一切物理现象都会完全消失,如单摆停止摆动,天平失效,液柱不再产生向下的压强等。


知识扩展:

1.实重和视重:
(1)实重:物体实际所受的重力。物体所受重力不会因物体运动状态的改变而变化。
(2)视重:当物体在竖直方向有加速度时(即ay≠ 0),物体对弹簧测力计的拉力或对台秤的压力将不等于物体的重力,此时弹簧测力计或台秤的示数叫物体的视重。
2.超重(失重)现象与物体重力变化的区别:
同一物体在地球上不同地理位置上的重力不同,纬度越高其重力越大,反之纬度越低其重力越小;同一纬度的同一物体离地面高度不同,重力亦不同,离地面越远其重力越小,反之离地面越近其重力越大。这种现象是由万有引力定律和地球自转等因素决定的。不能错误地认为这种现象就是所谓的“超重”或“失重” 现象。所谓“超重(失重)”是指当物体由于具有竖直向上(向下)的加速度,而使物体对支持物的压力或对悬挂物的拉力大于(小于)物体所受重力的现象。这与物体的重力随所在位置的纬度(高度)变化而变化的现象是截然不同的。
内容:

物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F=kma。在国际单位制中,k=1,上式简化为F=ma。牛顿这个单位就是根据牛顿第二定律定义的:使质量是1kg的物体产生1m/s2加速度的力,叫做1N(kg·m/s2=N)。

对牛顿第二定律的理解:

①模型性
牛顿第二定律的研究对象只能是质点模型或可看成质点模型的物体。
②因果性
力是产生加速度的原因,质量是物体惯性大小的量度,物体的加速度是力这一外因和质量这一内因共同作用的结果。
③矢量性
合外力的方向决定了加速度的方向,合外力方向变,加速度方向变,加速度方向与合外力方向一致。其实牛顿第二定律的表达形式就是矢量式。
④瞬时性
加速度与合外力是瞬时对应关系,它们同生、同灭、同变化。
⑤同一性(同体性)
中各物理量均指同一个研究对象。因此应用牛顿第二定律解题时,首先要处理好的问题是研究对象的选择与确定。
⑥相对性
中,a是相对于惯性系的而不是相对于非惯性系的,即a是相对于没有加速度参照系的。
⑦独立性
F产生的加速度a是物体的总加速度,根据矢量的合成与分解,则有物体在x方向的加速度ax;物体在y方向的合外力产生y方向的加速度ay。牛顿第二定律分量式为:
⑧局限性(适用范围)
牛顿第二定律只能解决物体的低速运动问题,不能解决物体的高速运动问题,只适用于宏观物体,不适用与微观粒子。
牛顿第二定律的应用:

1.应用牛顿第二定律解题的步骤:
(1)明确研究对象。可以以某一个质点作为研究对象,也可以以几个质点组成的质点组作为研究对象。设每个质点的质量为mi,对应的加速度为ai,则有:F合=
对这个结论可以这样理解:先分别以质点组中的每个质点为研究对象用牛顿第二定律:,将以上各式等号左、右分别相加,其中左边所有力中,凡属于系统内力的,总是成对出现并且大小相等方向相反,其矢量和必为零,所以最后得到的是该质点组所受的所有外力之和,即合外力F。。
(2)对研究对象进行受力分析,同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边表示出来。
(3)若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个或三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。
(4)当研究对象在研究过程的小同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。
2.两种分析动力学问题的方法:
(1)合成法分析动力学问题若物体只受两个力作用而产生加速度时,根据牛顿第二定律可知,利用平行四边形定则求出的两个力的合力方向就是加速度方向。特别是两个力互相垂直或相等时,应用力的合成法比较简单。
(2)正交分解法分析动力学问题当物体受到两个以上的力作用而产生加速度时,常用正交分解法解题。通常是分解力,但在有些情况下分解加速度更简单。
①分解力:一般将物体受到的各个力沿加速度方向和垂直于加速度方向分解,则:(沿加速度方向),(垂直于加速度方向)。
②分解加速度:当物体受到的力相互垂直时,沿这两个相互垂直的方向分解加速度,再应用牛顿第二定律列方程求解,有时更简单。具体问题中要分解力还是分解加速度需要具体分析,要以尽量减少被分解的量,尽量不分解待求的量为原则。
3.应用牛顿第二定律解决的两类问题:
(1)已知物体的受力情况,求解物体的运动情况解这类题目,一般是应用牛顿运动定律求出物体的加速度,再根据物体的初始条件,应用运动学公式,求出物体运动的情况,即求出物体在任意时刻的位置、速度及运动轨迹。流程图如下:

(2)已知物体的运动情况,求解物体的受力情况解这类题目,一般是应用运动学公式求出物体的加速度,再应用牛顿第二定律求出物体所受的合外力,进而求出物体所受的其他外力。流程图如下:

可以看出,在这两类基本问题中,应用到牛顿第二定律和运动学公式,而它们中间联系的纽带是加速度,所以求解这两类问题必须先求解物体的加速度。
知识扩展:

1.惯性系与非惯性系:牛顿运动定律成立的参考系,称为惯性参考系,简称惯性系。牛顿运动定律不成立的参考系,称为非惯性系。
2.关于a、△v、v与F的关系
(1)a与F有必然的瞬时的关系F为0,则a为0; F不为0,则a不为0,且大小为a=F/m。F改变,则a 立即改变,a和F之间是瞬时的对应关系,同时存在,同时消失.同时改变。
(2)△v(速度的改变量)与F有必然的但不是瞬时的联系 F为0,则△v为0;F不,0,并不能说明△v就一定不为0,因为,F不为0,而t=0,则△v=0,物体受合外力作用要有一段时间的积累,才能使速度改变。
(3)v(瞬时速度)与F无必然的联系 F为0时,物体可做匀速直线运动,v不为0;F不为0时,v可以为0,例如竖直上抛到达最高点时。
发现相似题
与“以下是必修1课本中四幅插图,关于这四幅插图下列说法正确的是...”考查相似的试题有: