返回

高中物理

首页
  • 问答题
    在竖直平面内放置一长为L、内壁光滑的薄壁玻璃管,在玻璃管的a端放置一个直径比玻璃管直径略小的小球,小球带电荷量为-q、质量为m.玻璃管右边的空间存在着匀强磁场与匀强电场.匀强磁场方向垂直于纸面向外,磁感应强度为B;匀强电场方向竖直向下,电场强度大小为
    mg
    q
    .如图所示,场的左边界与玻璃管平行,右边界足够远.玻璃管带着小球以水平速度v0垂直于左边界进入场中向右运动,由于水平外力F的作用,玻璃管进入场中速度保持不变,一段时间后小球从玻璃管b端滑出并能在竖直平面内运动,最后从左边界飞离电磁场.运动过程中小球的电荷量保持不变,不计空气阻力.
    (1)试分析小球在玻璃管中的运动情况;
    (2)试求小球从玻璃管b端滑出时的速度大小;
    (3)试求小球离开场时的运动方向与左边界的夹角.
    魔方格

    本题信息:物理问答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “在竖直平面内放置一长为L、内壁光滑的薄壁玻璃管,在玻璃管的a端放置一个直径比玻璃管直径略小的小球,小球带电荷量为-q、质量为m.玻璃管右边的空间存在着匀...” 主要考查您对

力的合成

力的分解

带电粒子在复合场中的运动

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 力的合成
  • 力的分解
  • 带电粒子在复合场中的运动
合力与分力:

当一个物体受到几个力的共同作用时,我们常常可以求出这样一个力,这个力产生的效果跟原来几个力的共同效果相同,这个力就叫做那几个力的合力,原来的几个力叫做这个力的分力。
①合力与分力是针对同一受力物体而言的。
②一个力之所以是其他几个力的合力,或者其他几个力之所以是这个力的分力,是冈为这一个力的作用效果与其他几个力共同作用的效果相当,合力与分力之间的关系是一种等效替代的关系。
③合力可能大于任何一个分力,也可能小于任何一个分力,也可能介于两个分力之间。
④如果两个分力的大小不变,夹角越大,合力就越小;夹角越小,合力就越大。
⑤两个大小一定的力F1、F2,其合力的大小范围


力的运算法则:

1.平行四边形定则
作用在同一点的两个互成角度的力的合力,不等于两分力的代数和,而是遵循平行四边形定则。如果以表示两个共点力F1和F2的线段为邻边作平行四边形,那么合力F的大小和方向就可以用这两个邻边之间的对角线表示,这叫做力的平行四边形定则,如图所示。

2.三角形定则和多边形定则如图(a)所示,两力F1、F2合成为F的平行四边形定则,可演变为(b)图,我们将(b)图称为三角形定则合成图,即将两分力F1、F2首尾相接,则F就是由F,的尾端指向F2的首端的有向线段所表示的力。

如果是多个力合成,则由三角形定则合成推广可得到多边形定则,如图为三个力F1,F2、F3的合成图,F 为其合力。


力的合成与分解:

(1)定义:求几个力的合力的过程叫力的合成,求一个力的分力的过程叫力的分解。
(2)力的合成与分解的具体方法
a.作图法:选取统一标度,严格作出力的图示及平行四边形,然后用统一标度去度量各个力的大小;
b.计算法:根据平行四边形定则作出示意图,然后利用解三角形的方法求合力或分力的大小。一般要求会解直角三角形。

力的分解的几种情况:




分解方法:



几种按效果分解的实例:





由力的三角形定则求力的最小值:

(1)当已知合力F的大小、方向及一个分力F1的方向时,另一个分力F2最小的条件是:两个分力垂直,如图甲。最小值
(2)当已知合力F的方向及一个分力F1的大小、方向时,另一个分力F2最小的条件是:所求分力F2与合力F垂直,如图乙。最小值
 
(3)当已知合力F的大小及一个分力F1的大小时,另一个分力F2最小的条件是:已知大小的分力F1与合力 F同方向。最小值

由圆的切线求力方向的极值:

(1)当已知两分力F1、F2的大小时,合力,的方向与较大分力间夹角有最大值,与较小分力间夹角有最小值。如图所示,设两分力中F1较大,则合力F与F1之间最大夹角θ满足
(2)当已知合力F与其中一个分力F1的大小时,若F >F1,则另一个分力F2与合力F的方向间夹角有一最大值。如图所示,其最大夹角θ满足。若F<F1时,则另一个分力F2与合力F间夹角无极值,可在0~180之间变化:当F1与F同向时分力F2与合力F之间夹角最大,为180;当F1与F反向时分力F2与合力 F之间夹角最小,为0,但两分力间夹角有最大值,其最大值满足


复合场:

同时存在电场和磁场的区域,同时存在磁场和重力场的区域,同时存在电场、磁场和重力的区域,都叫做叠加场,也称为复合场。三种场力的特点:
①重力的大小为mg,方向竖直向下。重力做功与路径无关,其数值除与带电粒子的质量有关外,还与始、终位置的高度差有关。
②电场力的大小为qE,方向与电场强度E及带电粒子所带电荷的性质有关。电场力做功与路径无关,其数值除与带电粒子的电荷量有关外,还与始、终位置的电势差有关。
③洛伦兹力的大小跟速度与磁场方向的夹角有关,当带电粒子的速度与磁场方向平行时,F=0;当带电粒子的速度与磁场方向垂直时,F=qvB。洛伦兹力的方向垂直于速度v和磁感应强度B所决定的平面。无论带电粒子做什么运动,洛伦兹力都不做功。
注:注意:电子、质子、α粒子、离子等微观粒子在叠加场中运动时,一般都不计重力。但质量较大的质点(如带电尘粒)在叠加场中运动时,不能忽略重力。

无约束情景下带电粒子在匀强复合场中的常见运动形式:



带电粒子在电磁组合场中运动时的处理方法:

1.电磁组合场
电磁组合场是指由电场和磁场组合而成的场,在空间同一区域只有电场或只有磁场,在不同区域中有不同的场。
2.组合场中带电粒子的运动
带电粒子在电场内可做加速直线运动、减速直线运动、类平抛运动、类斜抛运动,需要根据粒子进入电场时的速度方向、所受电场力,再南力和运动的关系来判定其运动形式。
粒子在匀强磁场中可以做直线运动,也可以做匀速圆周运动和螺旋运动,但在高中阶段通常涉及的是带电粒子所做的匀速圆周运动,通常需要确定粒子在磁场内做圆周运动进出磁场时的位置、圆心的位置、转过的圆心角、运动的时间等。
在电磁组合场问题中,需要通过连接点的速度将相邻区域内粒子的运动联系起来,粒子在无场区域内是做匀速直线运动的。解决此类问题的关键之一是画好运动轨迹示意图。

粒子在正交电磁场中做一般曲线运动的处理方法:

如图所示,一带正电的粒子从静止开始运动,所受洛伦兹力是一变力,粒子所做的运动是一变速曲线运动,若用动力学方法来处理其运动时,可将其运动进行如下分解:

 ①初速度的分解
因粒子初速度为零,可将初速度分解为水平向左和水平向右的两等大的初速度,令其大小满足
②受力分析按上述方法将初速度分解后,粒子在初始状态下所受外力如图所示。
 
③运动的分解将粒子向右的分速度,电场力,向上的洛伦兹力分配到一个分运动中,则此分运动中因,应是以速度所做的匀速运动。
将另一向左的分速度,向下的洛伦兹力分配到一个分运动中,则此分运动必是沿逆时针方向的匀速圆周运动。
④运动的合成
粒子所做的运动可以看成是水平向右的匀速直线运动与逆时针方向的匀速圆周运动的合运动。
a.运动轨迹
如图所示,
粒子运动轨迹与沿天花板匀速滚动的轮上某一定点的运动轨迹相同,即数学上所谓的滚轮线。
b.电场强度方向上的最大位移:
由两分运动可知,水平方向上的分运动不引起竖直方向上的位移,竖直方向上的最大位移等于匀速圆周分运动的直径:


可得
c.粒子的最大速率
由运动的合成可知,当匀速圆周分运动中粒子旋转到最低点时,两分运动的速度方向一致,此时粒子的速度达到最大:

解决复合场中粒子运动问题的思路:

解决电场、磁场、重力场中粒子的运动问题的方法可按以下思路进行。
(1)正确进行受力分析,除重力、弹力、摩擦力外,要特别注意电场力和磁场力的分析。
①受力分析的顺序:先场力(包括重力、电场力、磁场力),后弹力,再摩擦力等。
②重力、电场力与物体的运动速度无关,南质量决定重力的大小,由电荷量、场强决定电场力;但洛伦兹力的大小与粒子的速度有关,方向还与电荷的性质有关,所以必须充分注意到这一点。
(2)正确进行物体的运动状态分析,找出物体的速度、位置及变化,分清运动过程,如果出现临界状态,要分析临界条件。
(3)恰当选用解决力学问题的方法
①牛顿运动定律及运动学公式(只适用于匀变速运动)。
②用能量观点分析,包括动能定理和机械能(或能量)守恒定律。注意:不论带电体的运动状态如何,洛伦兹力永远不做功。
③合外力不断变化时,往往会出现临界状态,这时应以题中的“最大”、“恰好”等词语为突破口,挖掘隐含条件,列方程求解。
(4)注意无约束下的两种特殊运动形式
①受到洛伦兹力的带电粒子做直线运动时,所做直线运动必是匀速直线运动,所受合力必为零。
②在正交的匀强电场和匀强磁场组成的复合场中做匀速圆周运动的粒子,所受恒力的合力必为零。


发现相似题
与“在竖直平面内放置一长为L、内壁光滑的薄壁玻璃管,在玻璃管的...”考查相似的试题有: