本试题 “如图所示,小球A系在细线的一端,线的另一端固定在O点,O点到水平面的距离为h。物块B质量是小球的5倍,置于粗糙的水平面上且位于O点正下方,物块与水平面间的...” 主要考查您对机械能守恒定律
动量定理
碰撞
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
判定机械能守恒的方法:
(1)条件分析法:应用系统机械能守恒的条件进行分析。分析物体或系统的受力情况(包括内力和外力),明确各力做功的情况,若对物体或系统只有重力 (或弹力)做功,没有其他力做功或其他力做功的代数和为零,则系统的机械能守恒。
(2)能量转化分析法:从能量转化的角度进行分析:若只有系统内物体间动能和重力势能及弹性势能的相互转化,系统跟外界没有发生机械能的传递,机械能也没有转化成其他形式的能(如内能),则系统的机械能守恒。
(3)增减情况分析法:直接从机械能的各种形式的能量的增减情况进行分析。若系统的动能与势能均增加或均减少,则系统的机械能不守恒;若系统的动能不变,而势能发生了变化,或系统的势能不变,而动能发生了变化,则系统的机械能不守恒;若系统内各个物体的机械能均增加或均减少,则系统的机械能不守恒。
(4)对一些绳子突然绷紧、物体间非弹性碰撞等,除非题目特别说明,否则机械能必定不守恒。
竖直平面内圆周运动与机械能守恒问题的解法:
在自然界中,违背能量守恒的过程肯定是不能够发生的,而不违背能量守恒的过程也不一定能够发生,因为一个过程的进行要受到多种因素的制约,能量守恒只是这个过程发生的一个必要条件。如在竖直平面内的变速圆周运动模型中,无支撑物的情况下,物体要到达圆周的最高点,从能量角度来看,要求物体在最低点动能不小于最高点与最低点的重力势能差值。但只满足此条件物体并不一定能沿圆弧轨道运动到圆弧最高点。因为在沿圆弧轨道运动时还需满足动力学条件:所需向心力不小于重力,由此可以推知,在物体从圆弧轨道最低点开始运动时,若在动能全部转化为重力势能时所能上升的高度满足时,物体可在轨道上速度减小到零,即动能可全部转化为重力势能;在,物体上升到圆周最高点时的速度)时,物体可做完整的圆周运动;若在时,物体将在与圆心等高的位置与圆周最高点之间某处脱离轨道,之后物体做斜上抛运动,到达最高点时速度不为零,动能不能全部转化为重力势能,物体实际上升的高度满足。故在解决这类问题时不能单从能量守恒的角度来考虑。
冲量,动量与动量变化:
动量变化:
(1)动量变化的表达式:。(此式为矢量式)。
(2)的求法:
①若在同一直线上,则先规定正方向,再用正负表示然后进行代数运算求解。
②若不在同一直线上,则用平行四边形定则(或三角形定则)求矢量差。
(3)△p的方向:△p的方向与速度的变化量的方向相同。
动量和能量的综合问题的解法:
1.动量的观点与能量的观点
(1)动量的观点:动量定理和动量守恒定律。
(2)能量的观点:动能定理和能量守恒定律。这两个观点研究的是物体或系统运动变化所经历的过程中状态的改变,它无需对过程是怎样变化的细节进行深入的研究,而关心的是运动状态变化即改变的结果量及其引起变化的原因,简单地说,只要知道过程的始末状态动量式、动能式和力在过程中的冲量和所做的功,即可对问题求解。
2.利用动量观点和能量观点解题时应注意的问题动量定理和动量守恒定律是矢量表达式,还可写出分量表达式,而动能定理和能量守恒定律是标量表达式,绝无分量表达式。
弹性碰撞及讨论:
质量为m1与质量为m2的物体分别以速度运动并发生对心碰撞,碰撞过程中无机械能损失(如图所示)。
设碰后两物体的速度分别为
据动量守恒得
据机械能守恒得
由①②两式得
由上述表达式可以看出:
(1)若
(2)若即速度交换。
(3)若,即m2的速度几乎不变。
“一动一静”模型:
(1)弹性正碰,如图所示,在光滑水平面上质量为 m1的小球以速度v1与质量为m2的静止小球发生弹性正碰.
讨论碰后两球的速度根据动量守恒和机械能守恒有:
解上面两式可得:
碰后m1的速度
碰后m2的速度
讨论:
①若表示表示m1的速度不变,m2以2v1速度被撞出去。
②若都是正值,表示都与v1方向相同。
③若,则有即碰后两球速度互换。
④若为负值,表示方向相反, m1被弹回。
⑤若这时表示m1被反向以原速率弹回,而m2仍静止。
⑥
两物体碰后的速度随两物体的质量比变化情况如图所示。
⑦能量传递:在弹性碰撞中,传递的能量跟两者质量比有关,即两球质量越接近,碰撞中传递的动能越大;在两种情况下,传递的动能相等。
(2)完全非弹性碰撞上例中m1与m2发生完全非弹性碰撞,则有,碰后的共同速度
损失的动能
“二合一”模型:
这种模型是指两个速度不同的物体通过发生相互作用,最终两物体粘在一起运动或以共同的速度运动的模型。
这种模型的主要特征是终态共速(也可以是只在某一时刻共速.而研究的过程是从初始到共速的过程),从能量角度来看,这种过程中能量损失是最大的,属于完全非弹性碰撞的类型,在一维碰撞中的方程有:
相互作用的两个物体在很多情况下皆可当成碰撞处理,那么对相互作用中两物体相距“恰最近”、相距 “恰最远”或“恰上升到最高点”等一类,临界问题,求解的关键都是“速度相等”。在“类碰撞”问题中,碰撞时间不一定很短,但遵守的规律却是相同的,例如下面几种情形。
(1)如图中,光滑水平面上的A物体以速度v0去撞击静止的B物体,A、B两物体相距最近时,两物体速度必定相等,此时弹簧最短,其压缩量最大,系统损失的动能等于弹簧获得的弹性势能,
(2)在图中,物体A以速度v0滑到静止在光滑水平面上的小车B上,当A在B上滑行的距离最远时,A、B相对静止,A、B的速度必定相等,系统损失的动能等于AB间摩擦产生的热量。
(3)在图中,子弹以速度v0射入静止在光滑的水平面上的木块中。当子弹不穿出时,子弹和木块的速度必定相等,系统损失的动能等于子弹与木块间摩擦产生的热量。
(4)如图所示,质量为M的滑块静止在光滑水平面上,滑块的光滑弧面底部与桌面相切,一个质量为m 的小球以速度v0向滑块滚来。设小球不能越过滑块,则小球到达滑块上的最高点时(即小球在竖直方向上的速度为零),两者的速度肯定相等(方向为水平向右),小球获得的重力势能等于系统损失的动能
碰撞合理性的判断方法:
碰撞的合理性要遵循动量守恒定律、能量关系和速度关系:
1.系统动量守恒
2.碰撞过程中系统的总动能不会增加
如果物体发生的是弹性碰撞,总动能不变;其他情况碰撞后会有部分动能转化为内能,系统的动能将减小。即
3.速度要符合情景如果碰前两物体同向运动,则后面物体的速度必大于前面物体的速度,即否则无法实现碰撞。碰撞后,原来在前的物体速度一定增大,且原来在前的物体速度大于或等于原来在后的物体速度,即否则碰撞没有结束。如果碰前两物体是相向运动,则碰后,两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零。
与“如图所示,小球A系在细线的一端,线的另一端固定在O点,O点到...”考查相似的试题有: