返回

高中物理

首页
  • 填空题
    在开展研究性学习的过程中,某同学设计了一个利用线圈测量转轮转动角速度的装置.如图所示,在轮子的边缘贴上小磁体,将小线圈靠近轮边放置,接上数据采集器和电脑(即DIS实验器材).如果小线圈的面积为S,匝数为N,小磁体附近的磁感应强度最大值为B,回路的总电阻为R,实验发现,轮子转过θ角,小线圈的磁感应强度由最大值变为零.则该过程中磁通量的变化量△Φ=______;如果电脑显示该过程中感应电流的平均值为I,则转轮转动的角速度ω=______.
    魔方格

    本题信息:物理填空题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “在开展研究性学习的过程中,某同学设计了一个利用线圈测量转轮转动角速度的装置.如图所示,在轮子的边缘贴上小磁体,将小线圈靠近轮边放置,接上数据采集器...” 主要考查您对

线速度

角速度

法拉第电磁感应定律

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 线速度
  • 角速度
  • 法拉第电磁感应定律

线速度的定义:

质点沿圆周运动通过的弧长与所用时间的比值叫做线速度。


线速度的特性:

线速度是矢量,方向和半径垂直,和圆周相切。它是描述做圆周运动的物理运动快慢的物理量。

对线速度的理解:
物体上任一点对定轴作圆周运动时的速度称为“线速度”。它的一般定义是质点作曲线运动时所具有的顺时速度。它的方向沿运动轨道的切线方向,故又称切向速度。它是描述作曲线运动的质点运动快慢和方向的物理量。物体上各点作曲线运动时所具有的顺时速度,其方向沿运动轨道的切线方向。 (高中物理中的切线方向就指速度一侧的方向,和数学中的切线不同)


知识点拨:


如图,大圆和小圆有同一根皮带相连,皮带上的各个点的速率相同,所以大圆和小圆圆周上的线速度是相同的。


 角速度的定义:

圆周运动中,连接质点和圆心的半径转过的角度跟所用时间的比值叫做角速度。

                                                                                


角速度的特性:

角速度是矢量,高中阶段不研究其方向。它是描述做圆周运动的物体绕圆心转动快慢的物理量
单位:在国际单位制中,单位是“弧度/秒”(rad/s)。(1rad=360d°/(2π)≈57°17'45″)
转动周数时(例如:每分钟转动周数),则以转速来描述转动速度快慢。角速度的方向垂直于转动平面,可通过右手螺旋定则来确定。(角速度的方向,在高中物理的学习不属于考察的内容)


线速度和角速度的对比:
角速度是单位时间转过的角度;或者说是转过的角度和所用时间的比值。
线速度是单位时间走过的弧长;或者说是弧长和所用时间的比值。

角速度和线速度的关系:


知识拓展提升:

  例:计算地球和月亮公转的角速度:


通过计算知道,书中所提到的地球和月球的争论是没有结论的。比较运动得快慢,要看比较线速度还是角速度,不能简单说谁快谁慢。


法拉第电磁感应定律:




导体切割磁感线的两个特例:

的区别与联系及选用原则:



电磁感应中动力学问题的解法:

电磁感应和力学问题的综合,其联系的桥梁是磁场对感应电流的安培力,因为感应电流与导体运动的加速度有相互制约的关系。
1.分析思路
(1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向。
(2)求回路中的电流。
(3)分析研究导体受力情况(包含安培力,用左手定则确定其方向)。
(4)列动力学方程或平衡方程求解。
2.常见的动态分析这类问题中的导体一般不是做匀变速运动,而是经历一个动态变化过程再趋于一个稳定状态,故解这类问题时正确进行动态分析确定最终状态是解题的关键。同时也要抓好受力情况和运动情况的动态分析,研究顺序为:导体受力运动产生感应电动势一感应电流一通电导体受安培力一合外力变化一加速度变化一速度变化一周而复始地循环,循环结束时,加速度等于零.导体达到稳定运动状态。

电磁感应中的动力学临界问题:

(1)解决这类问题的关键是通过运动状态的分析,寻找过程中的临界状态,如速度、加速度求最大值或最小值的条件。
(2)基本思路:


发现相似题
与“在开展研究性学习的过程中,某同学设计了一个利用线圈测量转...”考查相似的试题有: