返回

高中物理

首页
  • 多选题
    1922年英国物理学家阿斯顿因质谱仪的发明、同位素和质谱的研究荣获了诺贝尔化学奖.若一束粒子由左端射入质谱仪后的运动轨迹如图所示,则下列说法中正确的是(  )
    A.该束带电粒子带负电
    B.速度选择器的P1极板带正电
    C.在B2磁场中运动半径越大的粒子,质量越大
    D.在B2磁场中运动半径越大的粒子,荷质比
    q
    m
    越小
    魔方格

    本题信息:物理多选题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “1922年英国物理学家阿斯顿因质谱仪的发明、同位素和质谱的研究荣获了诺贝尔化学奖.若一束粒子由左端射入质谱仪后的运动轨迹如图所示,则下列说法中正确的是...” 主要考查您对

带电粒子在匀强磁场中的运动

质谱仪

回旋加速器

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 带电粒子在匀强磁场中的运动
  • 质谱仪
  • 回旋加速器

带电粒子在匀强磁场中的运动形式:


电偏转与磁偏转的对比:





关于角度的两个结论:

(1)粒子速度的偏向角φ等于圆心角α,并等于AB弦与切线的弦切角θ的2倍(如图所示),即

(2)相对的弦切角θ相等,与相邻的弦切角θ'互补,即

有界磁场中的对称及临界问题:

(1)直线边界
粒子进出磁场时的速度关于磁场边界对称.如图所示。

(2)圆形边界
①沿半径方向射入磁场,必沿半径方向射出磁场。
②射入磁场的速度方向与所在半径间夹角等于射出磁场的速度方向与所在半径间的夹角。

(3)平行边界
存在着临界条件:

(4)相交直边界


带电粒子在匀强磁场中的匀速圆周运动:



确定轨迹圆心位置的方法:





带电粒子在磁场中做圆周运动时间和转过圆心角的求解方法:



带电粒子在有界磁场中的临界与极值问题的解法:

当某种物理现象变化为另一种物理现象,或物体从一种状态变化为另一种状态时,发生这种质的飞跃的转折态通常称为临界状态,涉及临界状态的物理问题叫做临界问题,产生临界状态的条件叫做临界条件,临界问题能有效地考查学生多方面的能力,在高考题中屡见不鲜。认真分析系统所经历的物理过程,找出与临界状态相对应的临界条件,是解答这类题目的关键,寻找临界条件,方法之一是从最大静摩擦力、极限频率、临界角、临界温度等具有临界含义的物理量及相关规律人手:方法之二是以题目叙述中的一些特殊词语如“恰好”、“刚好”、“最大”、“最高”、“至少”为突破口,挖掘隐含条件,探求临界位置或状态。如:
(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。据此可以确定速度、磁感应强度、轨迹半径、磁场区域面积等方面的极值。
(2)当速度v一定时,弧长(或弦长)越大,圆周角越大,则带电粒子在有界磁场巾运动的时间越长。(前提条件是弧是劣弧)
(3)当速率v变化时,圆周角大的,运动时间越越长。

“动态圆”问题的解法:

 1.入射粒子不同具体地说当入射粒子的比荷不同时,粒子以相同的速度或以相同的动能沿相同的方向射人匀强磁场时,粒子在磁场中运动的周期必不相同;运动的轨迹半径,在以不同的速度入射时不相同,以相同动能入射时可能不同。
2.入射方向不同相同的粒子以相同的速率沿不同方向射人匀强磁场中,粒子在磁场中运动的轨道中,运动周期是相同的,但粒子运动径迹所在空间位置不同,所有粒子经过的空间区域在以入射点为圆心,运动轨迹圆的直径为半径的球形空间内。当磁场空间有界时,粒子在有界磁场内运动的时间不同,所能到达的最远位置不同,从而形成不同的临界状态或极值问题,此类问题中有两点要特别注意:一是旋转方向对运动的影响,二是运动中离入射点的最远距离不超过2R,因R是相同的,进而据此可利用来判定转过的圆心角度、运动时间等极值问题,其中l是最远点到入射点间距离即轨迹上的弦长。
3.入射速率不同
相同的粒子从同一点沿同一方向以不同的速率进入匀强磁场中,虽然不同速率的粒子运动半径不同,但圆心却在同一直线上,各轨迹圆都相切于入射点。在有界磁场中会形成相切、过定点等临界状态,运动时间、空间能到达的范围等极值问题。当粒子穿过通过入射点的直线边界时,粒子的速度方向相同,偏向角相同,运动时间也相同。
4.入射位置不同
相同的粒子以相同的速度从不同的位置射入同一匀强磁场中,粒子在磁场中运动的周期、半径都相同,但在有界磁场中,对应于同一边界上的不同位置,会造成粒子在磁场巾运动的时间不同,通过的路程不同,出射方向不同,从而形成不同的临界状态,小同的极值问题。
5.有界磁场的边界位置变化
相同粒子以相同的速度从同定的位置出发,途经有界磁场Ⅸ域,若磁场位置发生变化时,会引起粒子进入磁场时的入射位置或相对磁场的入射方向发生变化,从而可能引起粒子在磁场中运动时间、偏转角度、出射位置与方向等发生变化,进而形成临界与极值问题。


质谱仪:

具有相同核电荷数而不同质量数的原子互称同位素,质谱仪是分离各种元素的同位素并测量它们质量的仪器,它由静电加速器、速度选择器、偏转磁场、显示屏等组成,它的结构原理如图所示。

如图所示,离子源S产生质量为m,电荷量为q的正离子(所受重力不计)。离子出来时速度很小(可忽略不计),经过电压为U的电场加速后进入磁感应强度为B的匀强磁场中做匀速圆周运动,经过半个周期到达记录它的照相底片P上,测得它在P上的位置到入口处的距离为L,则 


联立求解得
因此,只要知道q、B、L与U,就可计算出带电粒子的质量m。


速度选择器:

(1)平行板中电场强度E和磁感应强度B互相垂直,这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器,如图所示。
 
(2)带电粒子能够沿直线匀速通过速度选择器的条件是,即,与带电粒子的质量,所带电荷的正负、电荷量均无关,只与速度有关。
(3)若,粒子向电场力方向偏,电场力做正功,粒子动能增加;,粒子向磁场力方向偏,电场力做负功,动能减少。


回旋加速器:

(1)构造:
回旋加速器的核心部件是两个D 形扁金属盒,整个装置放在真空容器中,如图所示。

①两个D形盒之间留有一个窄缝,在中心位置放有粒子源。
②两个D形盒分别接在高频交变电源的两极上,在两盒间的窄缝中形成一个方向呈周期性变化的交变电场。
(2)原理:
利用电场对带电粒子的加速作用和磁场对运动电荷的偏转作用来获得高能粒子,如图所示。

①磁场的作用:带电粒子以某一速度垂直于磁场方向进入匀强磁场时,只在洛伦兹力作用下做匀速圆周运动,其中周期与速度和半径无关,使带电粒子每次进入D形盒中都能运动相等时间(半个周期)后,平行于电场方向进入电场中加速。
②交流电压:为了保证每次带电粒子经过狭缝时均被加速,使能量不断提高,要在狭缝处加一个周期与相同的交流电压。
(3)特点
①带电粒子在D形盒中的回转周期等于两盒狭缝间高频电场的变化周期,与带电粒子速度无关(磁场保证带电粒子做回旋运动,如图所示)。
②带电粒子在D形金属盒内运动的轨道半径不等距分布。设带正电粒子的质量为m,电荷量为q,狭缝间加速电压大小为U,粒子源产生的带电粒子,经电场加速第一次进入左半盒时速度和半径分别为
第二次进入左半盒时,经电场加速3次,进人左半盒的速度和半径为
第k次进入左半盒时,经电场加速(2k一1)次,进入左半盒时速度和半径为
所以,任意相邻两轨道半径之比
可见带电粒子在D形金属盒内运动时,越靠近D 形金属盒的边缘,相邻两轨道的间距越小。
③带电粒子在回旋加速器内运动的最终能量。由于D形金属盒的大小一定,所以不管粒子的大小及带电荷量如何,粒子最终从加速器内射出时应具有相同的旋转半径。
由牛顿第二定律得

动量大小与动能之间存在定量关系

由①②两式得
可见,带电粒子离开回旋加速器的动能与加速电压无关,而仅受磁感应强度B和D形盒半径的限制。加速电压的大小只能影响带电粒子在D形盒内加速的次数。
④带电粒子在回旋加速器内的运动时间。带电粒子在回旋加速器内运动时间的长短,与带电粒子做匀速圆周运动的周期有关,同时还与带电粒子在磁场中转动的圈数有关。设带电粒子在磁场中转动的圈数为n,加速电压为U。因每加速一次粒子获得的能量为qU,每圈有两次加速。结合因此:
所以带电粒子在回旋加速器内运动时间
 
⑤由于随着带电粒子速度的增大,当速度接近光速时,据爱因斯坦狭义相对论可知,粒子质量增大,回转周期变大,而与交变电压周期不一致,使加速器无法正常工作,所以回旋加速器不能无限地对带电粒子加速。


发现相似题
与“1922年英国物理学家阿斯顿因质谱仪的发明、同位素和质谱的研...”考查相似的试题有: