返回

高中三年级物理

首页
  • 计算题
    如图是建筑工地上常用的一种“深穴打夯机”示意图,电动机带动两个滚轮匀速转动将夯杆从深坑提上来,当夯杆底端刚到达坑口时,两个滚轮彼此分开,夯杆在自身重力作用下,落回深坑,夯实坑底。然后两个滚轮再次压紧,夯杆被提上来,如此周而复始。已知两个滚轮边缘的线速度恒为v=4m/s,滚轮对夯杆的正压力FN=2×104N,滚轮与夯杆间的动摩擦因数为0.3,夯杆质量m=1×103kg,坑深h=6.4m,假定在打夯的过程中坑的深度变化不大,取g=10m/s2。求:
    (1)在每个打夯周期中,电动机对夯杆所做的功;
    (2)每个打夯周期中滚轮与夯杆间因摩擦产生的热量;
    (3)打夯周期。

    本题信息:2010年0103月考题物理计算题难度极难 来源:马凤霞
  • 本题答案
    查看答案
本试题 “如图是建筑工地上常用的一种“深穴打夯机”示意图,电动机带动两个滚轮匀速转动将夯杆从深坑提上来,当夯杆底端刚到达坑口时,两个滚轮彼此分开,夯杆在自身重...” 主要考查您对

匀速直线运动

匀变速直线运动规律的应用

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 匀速直线运动
  • 匀变速直线运动规律的应用

定义:
在任意相等的时间内位移相等的直线运动叫做匀速直线运动。

特点:
加速度a=0,速度v=恒量。

位移公式:
S=vt。


知识点拨:

  1. 匀变速直线运动是在相等时间内速度变化相等的直线运动。注意在此定义中所涉及的“相等时间内”应理解为任意相等的时间内,而非一些特定相等的时间内。
  2. 做匀速直线运动的物体在任意相同时间内通过的路程都相等,即路程与时间成正比;速度大小不随路程和时间变化;位移与路程的大小相等。
  3. 匀速直线运动是理想状态与实际的结合。匀速直线运动不常见,因为物体做匀速直线运动的条件是不受外力或者所受的外力和为零,但是我们可以把一些运动近似地看成是匀速直线运动。如:滑冰运动员停止用力后的一段滑行、站在商场自动扶梯上的顾客的运动等等。我们可用公式v=s/t求得他们的运动速度。式中,s为位移,v为速度且为恒矢量,t为发生位移s所用的时间。由公式可以看出,位移是时间的正比例函数:位移与时间成正比。
  4. 当物体处于匀速直线运动时,物体受力平衡。
  5. 做匀速直线运动的物体其速度是保持不变的,因此,如果知道了某一时刻(或某一距离)的运动速度,就知道了它在任意时间段内或任意运动点上的速度。

                             


基本公式:

①速度公式:vt=v0+at;
②位移公式:s=v0t+at2
③速度位移公式:vt2-v02=2as。

推导公式:
①平均速度公式:V=
②某段时间的中间时刻的瞬时速度等于该段时间内的平均速度:
③某段位移的中间位置的瞬时速度公式:。无论匀加速还是匀减速,都有
④匀变速直线运动中,在任意两个连续相等的时间T内的位移差值是恒量,即ΔS=Sn+l–Sn=aT2=恒量。
⑤初速为零的匀变速直线运动中的比例关系(设T为相等的时间间隔,s为相等的位移间隔):
Ⅰ、T末、2T末、3T末……的瞬时速度之比为:v1:v2:v3:……:vn=1:2:3:……:n;
Ⅱ、T内、2T内、3T内……的位移之比为:s1:s2:s3:……:sn=1:4:9:……:n2
Ⅲ、第一个T内、第二个T内、第三个T内……的位移之比为:s:s:s:……:sN=1:3:5:……:(2N-1);
Ⅳ、前一个s、前两个s、前三个s……所用的时间之比为:t1:t2:t3:……:tn=1:……:
Ⅴ、第一个s、第二个s、第三个s……所用的时间之比为t、t、t:……:tN=1:……:


追及相遇问题:

①当两个物体在同一直线上运动时,由于两物体的运动情况不同,所以两物体之间的距离会不断发生变化,两物体间距会越来越大或越来越小,这时就会涉及追及、相遇或避免碰撞等问题。
②追及问题的两类情况:
Ⅰ、速度大者减速(如匀减速直线运动)追速度小者(如匀速运动):

Ⅱ、速度小者加速(如初速度为零的匀加速直线运动)追速度大者(如匀速运动):

③相遇问题的常见情况:
Ⅰ、同向运动的两物体追及即相遇;
Ⅱ、相向运动的物体,当各自发生的位移大小和等于开始时两物体的距离时即相遇。


知识点拨:

例:如图所示,光滑斜面AE被分为四个长度相等的部分,即AB=BC=CD=DE,一物体由A点静止释放,下列结论不正确的是(    )

A.  物体到达各点的速率之比=

B.  物体到达各点所经历的时间

C.  物体从A运动到E的全过程的平均速度

D.  物体通过每一部分时,其速度增量

解析:由,即A正确。由,则,由此可知B正确。由,即B点为AE段的时间中点,故,即C正确。对于匀变速直线运动,若时间相等,速度增量相等,故D错误,只有D符合题意。

答案:D

 


功:

1、功的定义:力和作用在力的方向上通过的位移的乘积。是描述力对空间积累效应的物理量,是过程量。
2、功的两个必要因素:作用在物体上的力;物体在力的方向上发生的位移。
3、功的定义式:W=Fscosα,其中F是恒力,s是作用点的位移,α是力与位移间的夹角(功的单位焦耳,简称焦,符号J)。
4、功的计算
①恒力的功可根据W=FScosα进行计算,本公式只适用于恒力做功;
②根据W=P·t,计算一段时间内平均做功;
③利用动能定理计算力的功,特别是变力所做的功;
④根据功是能量转化的量度反过来可求功。


力做功情况的判定方法:

一个力对物体做不做功,是做正功还是做负功,判断的方法是:
(1)看力与位移之间的夹角,或者看力与速度之间的夹角:为锐角时,力对物体做正功;为钝角时,力对物体做负功;为直角时,力对物体不做功。
(2)看物体间是否有能量转化:若有能量转化,则必定有力做功。此方法常用于相连的物体做曲线运动的情况。

变力做功的求法:

公式只适用于求恒力做功,即做功过程中F的大小、方向始终不变。而实际问题中变力做功是常见的,如何解答变力做功问题是学习中的一个难点。不能机械地套用这一公式,必须根据有关物理规律通过变换或转化来求解。
1.用求变力做功如果物体受到的力方向不变,且大小随位移均匀变化,可用求变力F所做的功。其平均值大小 为,其中F1是物体初态时受到的力的值,F2是物体末态时受到的力的值。如在求弹簧弹力所做的功时,再如题目中假定木桩、钉子等所受阻力与击入深度成正比的情况下,都可以用此法求解。
2.用微元法(或分段法)求变力做功变力做功时,可将整个过程分为几个微小的阶段,使力在每个阶段内不变,求出每个阶段内外力所做的功,然后再求和。当力的大小不变而方向始终与运动方向间的夹角恒定时,变力所做的功形:其中s是路程。
3.用等效法求变力做功若某一变力做的功等效于某一恒力做的功,则可以应用公式来求。这样,变力做功问题就转化为了恒力做功问题。
4.用图像法求变力做功存F—l图像中,图线与两坐标轴所围“面积”的代数和表示F做的功,“面积”有正负,在l轴上方的“面积”为正,在l轴下方的“面积”为负。
5.应用动能定理求变力做功
如果我们所研究的问题中有多个力做功,其中只有一个力是变力,其余的都是恒力,而且这些恒力所做的功比较容易计算,研究对象本身的动能变化量也比较容易计算时,用动能定理就可以求出这个变力所做的功。
6.利用功能关系求变力做功
在变力做功的过程中,当有重力势能、弹性势能以及其他形式的能量参与转化时,可以考虑用功能关系求解。因为做功的过程就是能量转化的过程,并且转化过程中能量守恒。
7.利用W=Pt求变力做功
这是一种等效代换的观点,用W=Pt计算功时,必须满足变力的功率是恒定的。若功率P是变化的,则需用计算,其中当P随时间均匀变化时,


发现相似题
与“如图是建筑工地上常用的一种“深穴打夯机”示意图,电动机带动...”考查相似的试题有: