返回

高中物理

首页
  • 多选题
    如图所示,位于光滑水平桌面上的物块P用跨过定滑轮的轻绳与小托盘相连,托盘内有砝码.托盘与法码的总质量为m,P的质量为2m,重力加速度为g.释放后,P从静止开始沿桌面运动的过程中,下列说法正确的是(  )
    A.托盘运动的加速度为g
    B.P运动的加速度为
    g
    3
    C.托盘对轻绳的拉力大小为
    2mg
    3
    D.砝码处于失重状态
    魔方格

    本题信息:2012年新干县一模物理多选题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “如图所示,位于光滑水平桌面上的物块P用跨过定滑轮的轻绳与小托盘相连,托盘内有砝码.托盘与法码的总质量为m,P的质量为2m,重力加速度为g.释放后,P从静止...” 主要考查您对

超重

失重

牛顿第二定律

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 超重
  • 失重
  • 牛顿第二定律

超重:

物体有向上的加速度(向上加速运动时或向下减速运动)称物体处于超重。处于超重的物体对支持面的压力FN(或对悬挂物的拉力)大于物体的重力mg,即FN=mg+ma。


超重和失重:


失重:

物体有向下的加速度(向下加速运动或向上减速运动)称物体处于失重。处于失重的物体对支持面的压力FN(或对悬挂物的拉力)小于物体的重力mg,即FN=mg-ma。

完全失重:

当a=g时FN=0,物体处于完全失重。在完全失重状态下,平常由重力产生的一切物理现象都会完全消失,如单摆停止摆动,天平失效,液柱不再产生向下的压强等。


知识扩展:

1.实重和视重:
(1)实重:物体实际所受的重力。物体所受重力不会因物体运动状态的改变而变化。
(2)视重:当物体在竖直方向有加速度时(即ay≠ 0),物体对弹簧测力计的拉力或对台秤的压力将不等于物体的重力,此时弹簧测力计或台秤的示数叫物体的视重。
2.超重(失重)现象与物体重力变化的区别:
同一物体在地球上不同地理位置上的重力不同,纬度越高其重力越大,反之纬度越低其重力越小;同一纬度的同一物体离地面高度不同,重力亦不同,离地面越远其重力越小,反之离地面越近其重力越大。这种现象是由万有引力定律和地球自转等因素决定的。不能错误地认为这种现象就是所谓的“超重”或“失重” 现象。所谓“超重(失重)”是指当物体由于具有竖直向上(向下)的加速度,而使物体对支持物的压力或对悬挂物的拉力大于(小于)物体所受重力的现象。这与物体的重力随所在位置的纬度(高度)变化而变化的现象是截然不同的。
内容:

物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F=kma。在国际单位制中,k=1,上式简化为F=ma。牛顿这个单位就是根据牛顿第二定律定义的:使质量是1kg的物体产生1m/s2加速度的力,叫做1N(kg·m/s2=N)。

对牛顿第二定律的理解:

①模型性
牛顿第二定律的研究对象只能是质点模型或可看成质点模型的物体。
②因果性
力是产生加速度的原因,质量是物体惯性大小的量度,物体的加速度是力这一外因和质量这一内因共同作用的结果。
③矢量性
合外力的方向决定了加速度的方向,合外力方向变,加速度方向变,加速度方向与合外力方向一致。其实牛顿第二定律的表达形式就是矢量式。
④瞬时性
加速度与合外力是瞬时对应关系,它们同生、同灭、同变化。
⑤同一性(同体性)
中各物理量均指同一个研究对象。因此应用牛顿第二定律解题时,首先要处理好的问题是研究对象的选择与确定。
⑥相对性
中,a是相对于惯性系的而不是相对于非惯性系的,即a是相对于没有加速度参照系的。
⑦独立性
F产生的加速度a是物体的总加速度,根据矢量的合成与分解,则有物体在x方向的加速度ax;物体在y方向的合外力产生y方向的加速度ay。牛顿第二定律分量式为:
⑧局限性(适用范围)
牛顿第二定律只能解决物体的低速运动问题,不能解决物体的高速运动问题,只适用于宏观物体,不适用与微观粒子。
牛顿第二定律的应用:

1.应用牛顿第二定律解题的步骤:
(1)明确研究对象。可以以某一个质点作为研究对象,也可以以几个质点组成的质点组作为研究对象。设每个质点的质量为mi,对应的加速度为ai,则有:F合=
对这个结论可以这样理解:先分别以质点组中的每个质点为研究对象用牛顿第二定律:,将以上各式等号左、右分别相加,其中左边所有力中,凡属于系统内力的,总是成对出现并且大小相等方向相反,其矢量和必为零,所以最后得到的是该质点组所受的所有外力之和,即合外力F。。
(2)对研究对象进行受力分析,同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边表示出来。
(3)若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个或三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。
(4)当研究对象在研究过程的小同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。
2.两种分析动力学问题的方法:
(1)合成法分析动力学问题若物体只受两个力作用而产生加速度时,根据牛顿第二定律可知,利用平行四边形定则求出的两个力的合力方向就是加速度方向。特别是两个力互相垂直或相等时,应用力的合成法比较简单。
(2)正交分解法分析动力学问题当物体受到两个以上的力作用而产生加速度时,常用正交分解法解题。通常是分解力,但在有些情况下分解加速度更简单。
①分解力:一般将物体受到的各个力沿加速度方向和垂直于加速度方向分解,则:(沿加速度方向),(垂直于加速度方向)。
②分解加速度:当物体受到的力相互垂直时,沿这两个相互垂直的方向分解加速度,再应用牛顿第二定律列方程求解,有时更简单。具体问题中要分解力还是分解加速度需要具体分析,要以尽量减少被分解的量,尽量不分解待求的量为原则。
3.应用牛顿第二定律解决的两类问题:
(1)已知物体的受力情况,求解物体的运动情况解这类题目,一般是应用牛顿运动定律求出物体的加速度,再根据物体的初始条件,应用运动学公式,求出物体运动的情况,即求出物体在任意时刻的位置、速度及运动轨迹。流程图如下:

(2)已知物体的运动情况,求解物体的受力情况解这类题目,一般是应用运动学公式求出物体的加速度,再应用牛顿第二定律求出物体所受的合外力,进而求出物体所受的其他外力。流程图如下:

可以看出,在这两类基本问题中,应用到牛顿第二定律和运动学公式,而它们中间联系的纽带是加速度,所以求解这两类问题必须先求解物体的加速度。
知识扩展:

1.惯性系与非惯性系:牛顿运动定律成立的参考系,称为惯性参考系,简称惯性系。牛顿运动定律不成立的参考系,称为非惯性系。
2.关于a、△v、v与F的关系
(1)a与F有必然的瞬时的关系F为0,则a为0; F不为0,则a不为0,且大小为a=F/m。F改变,则a 立即改变,a和F之间是瞬时的对应关系,同时存在,同时消失.同时改变。
(2)△v(速度的改变量)与F有必然的但不是瞬时的联系 F为0,则△v为0;F不,0,并不能说明△v就一定不为0,因为,F不为0,而t=0,则△v=0,物体受合外力作用要有一段时间的积累,才能使速度改变。
(3)v(瞬时速度)与F无必然的联系 F为0时,物体可做匀速直线运动,v不为0;F不为0时,v可以为0,例如竖直上抛到达最高点时。
发现相似题
与“如图所示,位于光滑水平桌面上的物块P用跨过定滑轮的轻绳与小...”考查相似的试题有: