返回

高中三年级物理

首页
  • 计算题
    一足够高的直立气缸上端开口,用一个厚度不计的光滑活塞封闭了一段高为80 cm的气柱,气缸侧壁通过一个小开口与U形管相连,开口离气缸底部的高度为70 cm,开口管内及U形管内的气体体积忽略不计。已知图示状态时气体的温度为7℃,U形管内水银面的高度差h1=5cm,大气压强为p0=1.0×105Pa不变,水银的密度ρ=13.6×103kg/m3,取g=10m/s2。求:
    (1)现在活塞上添加沙粒,同时对气缸内的气体加热,始终保持活塞的高度不变,当气体的温度缓慢升高到37℃时,U形管内水银的高度差为多少?
    (2)停止添加沙粒,让气缸内的气体逐渐冷却,那么当气体的温度至少降为多少℃时,U形管内两侧的水银面变为一样高?

    本题信息:2012年上海模拟题物理计算题难度较难 来源:马凤霞
  • 本题答案
    查看答案
本试题 “一足够高的直立气缸上端开口,用一个厚度不计的光滑活塞封闭了一段高为80 cm的气柱,气缸侧壁通过一个小开口与U形管相连,开口离气缸底部的高度为70 cm,开口...” 主要考查您对

查理定律(等容定律)

盖—吕萨克定律(等压定律)

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 查理定律(等容定律)
  • 盖—吕萨克定律(等压定律)

查理定律:

1.概念:一定质量的某种气体,在体积不变时,压强随温度的变化叫做等容变化
2.规律:一定质量的某种气体,在体积不变的情况下,压强p与热力学温度T成正比——查理定律
3.公式:
4.推论:
5.图像:
图线是过原点的直线,体积越大,斜率越小,即图线是过定点的直线,的压强。
6.条件:m一定,p不太大,T不太低
7.微观解释:一定质量的理想气体,说明气体总分子数Ⅳ不变。气体体积V不变,则单位体积内的分子数不变。当气体温度升高时,分子的平均动能增大,则单位时间内跟器壁单位面积上碰撞的分子数增多,且每次碰撞器壁产生的平均冲力增大,因此气体压强p将增大


盖-吕萨克定律:

1.概念:一定质量的某种气体,在压强不变时,体积随温度的变化叫做等压变化
2.规律一定质量的某种气体,在压强不变的情况下,其体积V与热力学温度T成正比——盖一吕萨克定律
3.公式:
4.推论:
5.图像:
图线是过原点的直线,压强越大,斜率越小,即图线是过定点的直线,的体积。
6.条件:m一定,p不太大,T不太低
7.微观解释:一定质量的理想气体,当温度升高时,气体分子的平均动能增大。要保持压强不变,必须减小单位体积内的分子个数,即增大气体的体积


封闭气体压强的求法:

有关气体压强的计算可转化为力学问题来处理。
1.参考液面法
(1)计算的主要依据是流体力学知识:
①液面下h深处由液体重力产生的压强。 (注意:h是液柱竖直高度,不一定等于液柱的长度)
②若液面与外界大气相接触,则液面下h处的压强为为外界大气压强。
③帕斯卡定律(液体传递外加压强的规律):加在密闭静止液体上的压强,能够大小不变地由液体向各个方向传递。
④连通器原理:在连通器中,同一种液体(中间液体不间断)的同一水平上的压强是相等的。
(2)计算的方法步骤:选取一个假想的液体薄面 (其自重不计)为研究对象;分析液面两侧重力情况,建立力的平衡方程;消去横截面积,得到液面两侧的压强平衡方程;求得气体压强。 2.平衡法
欲求用固体(如活塞等)封闭在静止容器中的气体压强,应对固体(如活塞等)进行受力分析,然后根据力的平衡条件求解。
3.动力学法
当封闭气体所在的系统处于力学非平衡状态时,欲求封闭气体的压强,首先要恰当地选择对象(如与气体相关联的液柱、同体等),并对其进行正确的受力分析(特别注意分析内、外气体的压力),然后应用牛顿第二定律列方程求解。


发现相似题
与“一足够高的直立气缸上端开口,用一个厚度不计的光滑活塞封闭...”考查相似的试题有: