返回

高中三年级化学

首页
  • 填空题
    在某温度下,反应H2(g)+CO2(g)H2O(g)+CO(g) △H>0的平衡常数K=2. 25。该温度下在甲、乙、丙三个恒容(体积均为2 L)密闭容器中,分别投入H2(g)和CO2(g),其起始浓度如下表所示。

    请回答下列问题:
    (1)反应开始时,反应速率最快的是容器(填“甲”“乙”或“丙”)____中的反应;该温度下乙、丙两个容器中反应的平衡常数分别是________、__________当升高体系温度时,消耗CO2的速率将____(填“变大”“变小”或“不变”,下 同),反应的平衡常数K将____。
    (2)假设甲容器中反应2min达到平衡,则v(H2)=_______。
    (3)平衡时,甲容器中CO2的转化率为________。
    (4)平衡时,甲、乙、丙容器中H2的转化率分别为a、b、c,则三者之间的大小关系为________。
    本题信息:2011年天津期末题化学填空题难度较难 来源:于丽娜
  • 本题答案
    查看答案
本试题 “在某温度下,反应H2(g)+CO2(g)H2O(g)+CO(g) △H>0的平衡常数K=2. 25。该温度下在甲、乙、丙三个恒容(体积均为2 L)密闭容器中,分别投入H2(g)和CO2(g),其起...” 主要考查您对

化学平衡常数

影响化学平衡的因素

化学反应速率的计算

有机化学的有关计算

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 化学平衡常数
  • 影响化学平衡的因素
  • 化学反应速率的计算
  • 有机化学的有关计算
定义:

在一定温度下,可逆反应无论从正反应开始,还是从逆反应开始,也不管反应物起始浓度大小,最后都达到平衡,这时各生成物浓度的化学计量数次幂的乘积除以各反应物浓度的化学计量数次幂的乘积所得的比值是个常数,用K表示,这个常数叫化学平衡常数。

化学表平衡达式:

对于可逆反应mA(g)+nB(g)pC(g)+qD(g)来说,化学平衡表达式:
化学平衡常数的意义:

①表示该反应在一定温度下,达到平衡时进行的程度,K值越大,正反应进行的越彻底,对反应物而言转化率越高。
②某一温度下的K′与K比较能够判断反应进行的方向
K′>K,反应正向进行;K′<K,反应逆向进行;K′=K,反应处于平衡状态
(3)化学平衡常数与浓度、压强、催化剂无关,与温度有关,在使用时必须指明温度。
(4)在计算平衡常数时,必须是平衡状态时的浓度。
(5)对于固体或纯液体而言,其浓度为定值,可以不列入其中。
(6)化学平衡常数是指某一具体反应的平衡常数,若反应方向改变,则平衡常数改变,且互为倒数关系。如:在一定温度下,



化学平衡常数的应用:

1.K值越大,说明平衡体系中生成物所占的比例越大,正向反应进行的程度越大,反应物转化率越大;反之,正向反应进行的程度就越小,反应物转化率就越小,即平衡常数的大小可以衡量反应进行的程度,判断平衡移动的方向,进行平衡的相关计算。
2.若用浓度商(任意状态的生成物浓度幂之积与反应物浓度幂之积的比值,符号为Qc)与K比较,可判断可逆反应是否达到平衡状态和反应进行的方向。
3.利用K值可判断反应的热效应若升高温度,K值增大,则正反应为吸热反应;若升高温度,K值减小,则正反应为放热反应。
4.计算转化率及浓度依据起始浓度(或平衡浓度)和平衡常数可以计算平衡浓度(或起始浓度),从而计算反应物的转化率。
影响化学平衡的因素:

(1)浓度在其他条件不变的情况下,增大反应物的浓度或减小生成物的浓度,都可以使化学平衡向正反应方向移动;增大生成物的浓度或减小反应物的浓度,都可以使化学平衡向逆反应方向移动。
(2)压强对反应前后气体总体积发生变化的反应,在其他条件不变时,增大压强会使平衡向气体体积缩小的方向移动,减小压强会使平衡向气体体积增大的方向移动。对于反应来说,加压,增大、增大,增大的倍数大,平衡向正反应方向移动:若减压,均减小,减小的倍数大,平衡向逆反应方向移动,加压、减压后v一t关系图像如下图:
 
(3)温度在其他条件不变时,温度升高平衡向吸热反应的方向移动,温度降低平衡向放热反应的方向移动
对于,加热时颜色变深,降温时颜色变浅。该反应升温、降温时,v—t天系图像如下图:

(4)催化剂由于催化剂能同等程度地改变正、逆反应速率,所以催化剂对化学平衡无影响,v一t图像为


稀有气体对化学反应速率和化学平衡的影响分析:

1.恒温恒容时
充入稀有气体体系总压强增大,但各反应成分分压不变,即各反应成分的浓度不变,化学反应速率不变,平衡不移动。
2.恒温恒压时
充入稀有气体容器容积增大各反应成分浓度降低反应速率减小,平衡向气体体积增大的方向移动。
3.当充入与反应无关的其他气体时,分析方法与充入稀有气体相同。

化学平衡图像:

1.速率一时间因此类图像定性揭示了随时间(含条件改变对化学反应速率的影响)变化的观律,体现了平衡的“动、等、定、变”的基本特征,以及平衡移动的方向等。
 

2.含量一时间一温度(压强)图常见的形式有下图所示的几种(C%指某产物百分含量,B%指某反应物百分含量),这些图像的折点表示达到平衡的时间,曲线的斜率反映了反应速率的大小,可以确定T(p)的高低(大小),水平线高低反映平衡移动的方向。


3.恒压(温)线该类图像的纵坐标为物质的平衡浓发(c)或反应物的转化率(α),横坐标为温度(T)或压强 (p),常见类型如下图:

小结:
1.图像分析应注意“三看”
(1)看两轴:认清两轴所表示的含义。
(2)看起点:从图像纵轴上的起点,一般可判断谁为反应物,谁为生成物以及平衡前反应进行的方向。
(3)看拐点:一般图像在拐点后平行于横轴则表示反应达平衡,如横轴为时间,由拐点可判断反应速率。
2.图像分析中,对于温度、浓度、压强三个因素,一般采用“定二议一”的方式进行分析
平衡移动方向与反应物转化率的关系:

1.温度或压强改变引起平衡向正反应方向移动时,反应物的转化率必然增大。
2.反应物用量的改变
(1)若反应物只有一种时,如aA(g)bB(g)+ cc(g),增加A的量,平衡向正反应方向移动,但反应物 A的转化率与气体物质的化学计量数有关:
 
(2)若反应物不止一种时,如aA(g)+bB(g)cC(g)+dD(g):
a.若只增加A的量,平衡向正反应方向移动,而A的转化率减小,B的转化率增大。
b.若按原比例同倍数的增加反应物A和B的量,则平衡向正反应方向移动,而反应物的转化率与气体物质的计量数有关:
 
c.若不同倍增加A、B的量,相当于增加了一种物质,同a。
3.催化剂不改变转化率。
4.反应物起始的物质的量之比等于化学计量数之比时,各反应物转化率相等。

浓度、压强影响化学平衡的几种特殊情况:

1.当反应混合物中存在固体或纯液体物质时,由于其“浓度”是恒定的,不随其量的增减而变化,故改变这些固体或纯液体的量,对平衡基本无影响。
2.南于压强的变化对非气态物质的浓度基本无影响,因此,当反应混合物中不存在气态物质时,压强的变化对平衡无影响。
3.对于气体分子数无变化的反应,如,压强的变化对其平衡无影响。这是因为,在这种情况下,压强的变化对正、逆反应速率的影响程度是等同的,故平衡不移动。
4.对于有气体参加的反应,同等程度地改变反应混合物中各物质的浓度,应视为压强对平衡的影响,如某平衡体系中,,当浓度同时增大一倍时,即让,此时相当于压强增大一倍,平衡向生成NH3的方向移动。
5.在恒容的密闭容器中,当改变其中一种气体物质的浓度时,必然同时引起压强改变,但判断平衡移动的方向时,心仍从浓度的影响去考虑:如,平衡后,向容器中再通入反应物,使 c(NO2)增大,平衡正向移动;如向容器中再通入生成物 N2O4,则使c(N2O4)增大,平衡逆向移动。但由于两种情况下,容器内的压强都增大,故对最终平衡状态的影响是一致的,如两种情况下,重新达到平衡后,NO2的百分含量都比原平衡时要小

化学反应速率的求算:

首先要熟练掌握化学反应速率的含义,明确中各个量的含义和单位,如:以具体某一种物质 B表示的化学反应速率为。△c的单位一般用mol/L表示,而△t的单位一般用s(秒)、min (分钟)、h(小时)等表示,所以v的单位可以是等。对于反应,有,利用这一关系,可以很方便地求算出不同物质表示的v的数值:


化学反应速率图像及其应用:

1.物质的量(或浓度)一时间图像及应用此类图像能说明反应体系各组分(或某一组分)在反应过程中的浓度变化情况。如A(g) +B(g)3C(g)的反应情况如图所示,

要注意此类图像各曲线的折点(达平衡)时刻相同,各物质浓度变化符合化学方程式中的计量数关系。例如:某温度时,在恒容(VL)容器中,X、Y、z三种物质的物质的量随时间的变化曲线如下图所示。

根据图像可进行如下计算:
(1)计算某物质在O一t3刻的平均反应速率、转化率,如 Y的转化率为.
(2)确定化学方程式中各物质的化学计量数之比如X、Y、z三种物质的化学计量数之比为: (n1一n3):(n2一n3):n2。
2.全程速率一时间图像如Zn与足量盐酸的反应,反应速率随时间的变化出现的情况,如图所示,

解释原因:AB段(v增大),因反应为放热反应,随反应的进行,温度升高,导致反应速率增大;BC段(v减小),则主要因为随反应的进行,溶液中 c(H+)减小,导致反应速率减小。故分析时要抓住各阶段的主要矛盾,认真分析。
3.速率一温度(压强)图像这类图像有两种情况:一是不隐含时间变化的速率一温度(压强)图,二是隐含时间变化的速率一温度 (压强)图。以,△H< 0为例,V一T(P)图像如下:

有机化学的相关计算:

包括确定有机物分子中元素质量比,所含原子个数,有机物燃气确定其组成,确定有机物分子中元素质量分数,确定有机物分子式、结构简式等。确定有机物分子式、结构简式的计算: (1)先求有机物的最简式和相对分子质量,再依(最简式相对分子质量)n=相对分子质量,求得分子式,再根据题中给的信息确定有机物的官能团,进而确定有机物的结构简式。
(2)商余法适用于烃分子式的确定:商为C原子数,余数为H原子数。注意:一个C原子的质量=12个H原子的质量

有机物分子式的确定:

1.有机物组成元素的判断一般来说,有机物完全燃烧后各元素对应的产物若某有机物完全燃烧后产物只有则其组成元素可能为 C、H或C、H、O。欲判断该有机物是否含氧元素,首先应求出产物CO2中碳元素的质量及H2O中氢元素的质量,然后将C、H的质量之和与原来有机物的质量比较,若二者相等,则原有机物中不含氧元素;若有机物的质量大于C、H的质量之和,则原有机物中含氧元素。
2.确定有机物分子式的方法
(1)实验式法:实验式又叫最简式。
 
(2)物质的量关系法:由密度或其他条件求摩尔质量求1moL分子中所含元素原子的物质的量求分子式。
(3)化学方程式法(代数法):利用化学方程式列方程组求解未知数值求分子式。
(4)通式法:题干要求或物质性质类别及组成通式n值分子式。
3.相对分子质量的测定方法
相对分子质量的测定方法——质谱法,找最大质荷比,确定相对分子质量。
4.有机物的相对分子质量的相关规律
(1)设烃的混合物的平均相对分子质量为,平均分子式为则:
①若<26,则一定有CH4;
则一定有CH4;
③若y<4,则一定有C2H2。
(2)最简式相同规律
①含有n个碳原子的饱和一元醛与含有2n个碳原子的饱和一元羧酸和饱和一元酯具有相同的最简式 (n≥2)。
②含有n个碳原子的炔烃与含有3n个碳原子的苯及其同系物具有相同的最简式。最简式相同的有机物,无论多少种,以何种比例混合,混合物中元素质量比例相同。
(3)相对分子质量相同规律
①同分异构体的相对分子质量必然相同。
②含有n个碳原子的一元醇与含(n—1)个碳原子的同类型一元羧酸和一元酯的相对分子质量相同。
③含有n个碳原子的烷烃与(n—1)个碳原子的饱和一元醛,即的相对分子质量相同。
④常见的相对分子质量相同的有机物和无机物有:
a.相对分子质量为28的有
b.相对分子质量为30的有
c.相对分子质量为44的有
d.相对分子质量为46的有
e.相对分子质量为60的有
(4)由相对分子质量求烃的分子式
设烃的相对分子质量为M,由可知:
则烃的分子式为若b为0,则烃的分子式为若b太小而不合理,则可变换为(减碳增氢法,减1个C原子,增加12个H原子)。如分子式为又如分子式为(萘)或 (壬烷)。


酚类化合物与反应时最大用量的计算:

 溶液是有机反应中的常见试剂,它们能参与的反应有哪些呢?
1.Br2:①与等发生加成反应;
②取代酚羟基邻位、对位上的氢原子;
③取代饱和碳原子上的氢原子。
2.H2:与有机物中的等发生加成反应。
3.NaOH溶液:与酚、羧酸发生中和反应(但不与醇反应),催化卤代烃、酯等的水解并与水解生成的氢卤酸、酚、羧酸等发生中和反应。
注意:
①发生加成反应时,断裂双键或三键中的1mol键消耗1molBr2或H2;发生取代反应时,1molBr2只取代1mol(而不是2mol)氢原子(同时生成1molHBr)。 
②H2不与羧酸、酯基及羧酸酐中的发生加成反应.


发现相似题
与“在某温度下,反应H2(g)+CO2(g)H2O(g)+CO(g) △H>0的平衡常数K=...”考查相似的试题有: