返回

高中一年级物理

首页
  • 计算题
    如图所示,装置BO′O可绕竖直轴O′O转动,可视为质点的小球A与两细线连接后分别系于B、C两点,装置静止时细线AB水平,细线AC与竖直方向的夹角θ=37°.已知小球的质量m=1kg,细线AC 长L=1m,B点距C点的水平和竖直距离相等.(重力加速度g取10m/s2
    (1)若装置匀速转动的角速度为ω1,细线AB上的张力为零而细线AC与竖直方向夹角仍为37°,求角速度ω1的大小;
    (2)若装置匀速转动的角速度,求细线AC与竖直方向的夹角;
    (3)装置可以以不同的角速度匀速转动,试通过计算在坐标图中画出细线AC上张力T随角速度的平方ω2 变化的关系图象.
       

    本题信息:2012年江苏期中题物理计算题难度极难 来源:马凤霞
  • 本题答案
    查看答案
本试题 “如图所示,装置BO′O可绕竖直轴O′O转动,可视为质点的小球A与两细线连接后分别系于B、C两点,装置静止时细线AB水平,细线AC与竖直方向的夹角θ=37°.已知小球的...” 主要考查您对

圆锥摆

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 圆锥摆

圆锥摆的知识:

圆锥摆模型的结构特点——一根质量和伸长可以不计的线,系一个可以视为质点的摆球,在水平面内做匀速圆周运动,且在摆线沿顶点位置不变的圆锥面上运动。


圆锥摆的特点:

1、圆锥摆模型的受力特点——只受两个力:竖直向下的重力(mg)和沿摆线方向的拉力(F),二力的合力就是摆球做圆周运动的向心力(Fn),如图所示。

2、向心力和向心加速度的计算
设摆球的质量为m,摆长为l,与竖直方向的夹角为θ,摆球的线速度、角速度、周期和频率依次为v、ω、T和f。如图所示,根据不同的条件
向心力可以表示为:
向心加速度可表示为:
3、摆线拉力的计算计算
摆线的拉力,有两种基本思路:
①当θ角已知时,
②当θ角未知时,
4、周期T、频率f和角速度ω的计算
根据向心加速度公式,有。式中为摆球的轨道平面到悬点的距离,即圆锥摆的高度。由这些公式可知,高度相同的圆锥摆,即等高圆锥摆的T、f和ω相等,与m、l和θ无关。
5、漏斗摆:物体在光滑的漏斗形容器内壁的某水平面上做匀速圆周运动。漏斗摆的力学特点:物体只受两个力,竖直向下的重力mg,垂直于漏斗壁的弹力,两个力的合力水平指向转轴,其向心力。如图所示。

①向心加速度的计算
,θ角一定,故an恒定。
②周期T、角速度ω、线速度v的计算(设匀速圆周运动的平面离漏斗尖端距离为h)
,得
,得
,得
可见,h增大,线速度增大,角速度减小,周期增大。


结构特点:
一根质量和伸长可以不计的线,系一个可以视为质点的摆球,在水平面内作匀速圆周运动。

受力特点:
只受两个力:竖直向下的重力 mg 和沿摆线方向的拉力 F 。两个力的合力,就是摆球作圆周运动的向心力 F n


发现相似题
与“如图所示,装置BO′O可绕竖直轴O′O转动,可视为质点的小球A与...”考查相似的试题有: