返回

高中三年级物理

首页
  • 不定项选择
    不定项选择
    在物理学的重大发现中科学家们创造出了许多物理学研究方法,如理想实验法、控制变量法、极限思维法、等效替 代法、理想模型法、微元法等,以下关于所用物理学研究方法的叙述不正确的是(   )
    A.在不需要考虑带电体本身的大小和形状时,用点电荷来代替实际带电体采用了控制变量法
    B.根据速度定义式当△t非常小时就可以表示物体在t时刻的瞬时速度,该定义采用了极限思维法
    C.伽利略在研究自由落体运动时采用了理想模型的方法
    D.在推导匀变速直线运动位移公式时,把整个运动过程划分成很多小段,每一小段可近似看做匀速直线运动,然后把各小段的位移相加,这里采用了微元法
    本题信息:2012年模拟题物理不定项选择难度一般 来源:牛青丹
  • 本题答案
    查看答案
本试题 “不定项选择在物理学的重大发现中科学家们创造出了许多物理学研究方法,如理想实验法、控制变量法、极限思维法、等效替 代法、理想模型法、微元法等,以下关于...” 主要考查您对

平均速度和瞬时速度的区别

匀变速直线运动的位移与时间的关系

伽利略对自由落体运动的研究

电荷、元电荷

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 平均速度和瞬时速度的区别
  • 匀变速直线运动的位移与时间的关系
  • 伽利略对自由落体运动的研究
  • 电荷、元电荷

平均速度:
质点在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间(或位移)的平均速度v,即,平均速度是矢量,其方向跟位移方向相同.平均速度是对变速运动的粗略描述。

瞬时速度:
运动物体在某一时刻(或经过某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧,瞬时速度是对变速运动的精确描述,其大小叫速率。

平均速率:
物体在某段时间内通过的路程l跟通过这段路程所用的时间t的比值,叫做这段路程(或这段时间)的平均速率,即,它是标量,值得注意的是:它并不是平均速度的大小.


平均速度和瞬时速度对比:

(1)区别:平均速度反映的是物体在整个运动过程中的整体运动情况,而瞬时速度反映的是物体在运动过程的某一时刻或某一位置的运动情况;
(2)联系:在匀速直线运动中,任何时刻的瞬时速度和整个运动过程中的平均速度相同。


方法与知识感悟:

平均速度是反映的某一段运动过程中的平均运动快慢,是这一过程中的位移与时间的比值(是平均速度的定义式),适用于所有的运动;而适用于匀变速直线运动,但若,却不能判定该物体做匀变速直线运动.

平均速度的计算:

一辆汽车沿平直公路行驶,先以速度v1通过前的位移,再以速度v2=50km/h通过其余的位移.若整个位移中的平均速度=37.5km/h,则第一段位移内的平均速度是多少?
解:设整段位移为x,通过前位移和后位移的时间分别为t和t,根据,可得。解得第一段时间位移内的速度=25km/h。


匀变速直线运动的位移公式:

由平均速度的定义和匀变速直线运动的平均速度及速度公式,联立推导出匀变速直线运动的位移公式:


知识点拨:

1、是匀变速直线运动位移的一般表示形式.它能表明质点在各个时刻相对初始时刻(t=0)的位移。
2、在位移公式中s、v0、a均是矢量,解题时一般要选取v0方向为正。
3、位移公式可由速度图象来推导,

     

如图是某物体做匀变速直线运动的图象.根据图象的物理意义,它与横轴(时间轴)所围的那块梯形面积表示运动的位移.所以:


亚里士多德和伽利略对自由落体运动的研究:

       古希腊权威思想家亚里士多德曾经断言:物体从高空落下的快慢同物体的重量成正比,重者下落快,轻者下落慢。比如说,十磅重的物体落下时要比一磅重的物体落下快十倍。1800多年来,人们都把这个错误论断当作真理而信守不移。
        直到16世纪,伽利略才发现了这一理论在逻辑上的矛盾。伽利略通过“比萨斜塔试验”,用事实证明,轻重不同的物体,从同一高度坠落,加速度一样,它们将同时着地,从而推翻了亚里士多德的错误论断。这就是被伽利略所证明的,现在已为人们所认识的自由落体定律。“比萨斜塔试验”作为自然科学实例,为实践是检验真理的惟一标准提供了一个生动的例证。

伽利略的科学研究方法:

提出问题→合理猜想→数学推理→实验验证→合理外推→得出结论。


伽利略的探索之路:

知识=观察+实验+思考

1、大胆的猜测:下落物体的速度是随时间均匀增加的,即,则测瞬时速度V与时间t成正比

困难一:瞬时速度无法准确测量。为了解决测量瞬时速度的困难,伽利略寻求间接验证的途径(思维的作用)
则测下落的高度与时间t2成正比

2、实验验证:伽利略用铜球从斜槽的不同位置由静止下落,伽利略手稿中记录的一组实验数据

结果表示为:
伽利略发现,斜面的倾角不同,上述比例关系同样成立,只是这个常数的随着θ的增大而增大。

困难二:伽利略用斜面实验验证了后,怎样说明落体运动也符合这个规律?

3、合理外推:随着θ的增大,的数值在增大。当θ=90°时,即物体竖直下落时,这个关系也应该成立,这时的数值最大。

至此,他终于成功地验证了原先的猜想,不但否定了亚里士多德的错误论断,而且得到了物体下落的规律。

分析:

伽利略的成功,不仅在与找到了落体运动的规律,更重要的是开辟了一条研究物理学的研究之路。

思考:

科学思想方法程序是:对现象的一般观察→提出假设→运用逻辑(包括数学)得出结论→通过实验对结论进行检验→对假说进行修正和推广→……

其核心是:把实验和逻辑和谐地结合起来。


电荷、电荷守恒定律:

 1.涉及电荷的基本概念
(1)电荷自然界中存在着两种电荷,它们分别为正电荷和负电荷。用毛皮摩擦过的橡胶棒上带的电荷叫负电荷,用丝绸摩擦过的玻璃棒上带的电荷叫正电荷。同种电荷互相排斥,异种电荷互相吸引。
(2)电荷量电荷量是指物体带电的多少。电荷量是电荷的定量量度。正电荷的电荷量为正值,负电荷的电荷量为负值。尽管电荷量有正、负值(正号一般省略),但要知道这里的“+”、“-”号代表电荷的性质(种类),与数学中的正、负号的含义不同。在国际单位制中,电荷量的单位是库仑,简称库,符号c。
(3)元电荷电子和质子带有等量的异种电荷,其电荷量e: 1.60×10-19C,称为元电荷,用e表示。所有带电体的电荷量都是元电荷e的整数倍,这就是说电荷量是不能连续变化的物理量。无电荷不是电荷,它是指电荷的电荷量,电荷量1.60×10-19C称为元电荷。元电荷的数值最早是由美国科学家密立根用实验测得的。所有带电体的电荷量等于元电荷或者等于元电荷的整数倍。质子、电子都不叫元电荷,它们电荷量的绝对值才叫元电荷。
(4)点电荷形状和大小对研究问题的影响可以忽略的带电体称为点电荷。
①点电荷是无大小、无形状、只有电荷量的一个理想化模型。在实际问题中,只有当带电体间的距离比它们自身的大小大得多,以至于带电体的形状和大小对相互作用力的影响可以忽略不计时,带电体才可以被视为点电荷。
②一个带电体能否被视为点电荷完全取决于自身的几何形状、大小与其他带电体之间的距离的比较。即带电体很小,不一定可被视为点电荷,带电体很大,也不一定不能被视为点电荷。
(5)感应电荷当一个带电体靠近导体时,南于电荷间相互吸引或排斥,导体中的自由电荷便会趋向或远离带电体,使导体靠近带电体的一端带异号电荷,远离带电体的一端带同号电荷。这种现象叫做静电感应。由于静电感应而使导体两端出现的等量异号电荷通常叫做感应电荷。其特点是:不带电导体靠近带电体时,靠近带电体的一端出现与带电体电性相反的电荷,远离带电体的一端出现与带电体电性相同的电荷。
(6)场源电荷电场是由电荷产生的,我们把产生电场的电荷叫做场源电荷。
(7)试探电荷研究电场的基本方法之一是在电场中放入一带电荷量很小的点电荷,分析其受力和能量情况,借以研究电场的性质,这样的电荷称为试探电荷。作为试探电荷的带电体,基本要求是体积要小,能研究电场中每一点的性质,还要求带电体所带电荷量要少.以放入试探电荷后试探电荷对原电场的影响可忽略为原则。
(8)净电荷物体带电实质是得到或失去了电子,讨论物体带何种电荷,所带电荷量是多少,是指物体的净电荷是正还是负,物体所具有的总电荷中正、负电荷的差值是多少,电荷量是物体中净电荷的多少。
(9)比荷带电体所带电荷量与其质量之比叫做该带电体的比荷。比荷是一个重要的物理量,常用来描述微观粒子的性质,在国际单位制中其单位为库仑每千克,符号 C/kg。


发现相似题
与“不定项选择在物理学的重大发现中科学家们创造出了许多物理学...”考查相似的试题有: