返回

高中物理

首页
  • 多选题
    如图所示,ABC为竖直平面内的光滑绝缘轨道,其中AB为倾斜直轨道,BC为与AB相切的圆形轨道,并且圆形轨道处在匀强磁场中,磁场方向垂直纸面向里.质量相同的甲、乙、丙三个小球中,甲球带正电、乙球带负电、丙球不带电.现将三个小球在轨道AB上分别从不同高度处由静止释放,都恰好通过圆形轨道的最高点,则(  )
    A.经过最高点时,三个小球的速度相等
    B.经过最高点时,甲球的速度最小
    C.甲球的释放位置比乙球的高
    D.运动过程中三个小球的机械能均保持不变
    魔方格

    本题信息:2012年湖南模拟物理多选题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “如图所示,ABC为竖直平面内的光滑绝缘轨道,其中AB为倾斜直轨道,BC为与AB相切的圆形轨道,并且圆形轨道处在匀强磁场中,磁场方向垂直纸面向里.质量相同的甲...” 主要考查您对

机械能守恒定律

带电粒子在匀强磁场中的运动

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 机械能守恒定律
  • 带电粒子在匀强磁场中的运动
机械能守恒定律:

1、内容:只有重力(和弹簧弹力)做功的情形下,物体动能和重力势能(及弹性势能)发生相互转化,但机械能的总量保持不变。
2、表达式:

3.条件
机械能守恒的条件是:只有重力或弹力做功。可以从以下三个方面理解:
(1)只受重力作用,例如在不考虑空气阻力的情况下的各种抛体运动,物体的机械能守恒。
(2)受其他力,但其他力不做功,只有重力或弹力做功。例如物体沿光滑的曲面下滑,受重力、曲面的支持力的作用,但曲面的支持力不做功,物体的机械能守恒。
(3)其他力做功,但做功的代数和为零。

判定机械能守恒的方法:

 (1)条件分析法:应用系统机械能守恒的条件进行分析。分析物体或系统的受力情况(包括内力和外力),明确各力做功的情况,若对物体或系统只有重力 (或弹力)做功,没有其他力做功或其他力做功的代数和为零,则系统的机械能守恒。
(2)能量转化分析法:从能量转化的角度进行分析:若只有系统内物体间动能和重力势能及弹性势能的相互转化,系统跟外界没有发生机械能的传递,机械能也没有转化成其他形式的能(如内能),则系统的机械能守恒。
(3)增减情况分析法:直接从机械能的各种形式的能量的增减情况进行分析。若系统的动能与势能均增加或均减少,则系统的机械能不守恒;若系统的动能不变,而势能发生了变化,或系统的势能不变,而动能发生了变化,则系统的机械能不守恒;若系统内各个物体的机械能均增加或均减少,则系统的机械能不守恒。
(4)对一些绳子突然绷紧、物体间非弹性碰撞等,除非题目特别说明,否则机械能必定不守恒。

竖直平面内圆周运动与机械能守恒问题的解法:

在自然界中,违背能量守恒的过程肯定是不能够发生的,而不违背能量守恒的过程也不一定能够发生,因为一个过程的进行要受到多种因素的制约,能量守恒只是这个过程发生的一个必要条件。如在竖直平面内的变速圆周运动模型中,无支撑物的情况下,物体要到达圆周的最高点,从能量角度来看,要求物体在最低点动能不小于最高点与最低点的重力势能差值。但只满足此条件物体并不一定能沿圆弧轨道运动到圆弧最高点。因为在沿圆弧轨道运动时还需满足动力学条件:所需向心力不小于重力,由此可以推知,在物体从圆弧轨道最低点开始运动时,若在动能全部转化为重力势能时所能上升的高度满足时,物体可在轨道上速度减小到零,即动能可全部转化为重力势能;在,物体上升到圆周最高点时的速度)时,物体可做完整的圆周运动;若在时,物体将在与圆心等高的位置与圆周最高点之间某处脱离轨道,之后物体做斜上抛运动,到达最高点时速度不为零,动能不能全部转化为重力势能,物体实际上升的高度满足。故在解决这类问题时不能单从能量守恒的角度来考虑。


带电粒子在匀强磁场中的运动形式:


电偏转与磁偏转的对比:





关于角度的两个结论:

(1)粒子速度的偏向角φ等于圆心角α,并等于AB弦与切线的弦切角θ的2倍(如图所示),即

(2)相对的弦切角θ相等,与相邻的弦切角θ'互补,即

有界磁场中的对称及临界问题:

(1)直线边界
粒子进出磁场时的速度关于磁场边界对称.如图所示。

(2)圆形边界
①沿半径方向射入磁场,必沿半径方向射出磁场。
②射入磁场的速度方向与所在半径间夹角等于射出磁场的速度方向与所在半径间的夹角。

(3)平行边界
存在着临界条件:

(4)相交直边界


带电粒子在匀强磁场中的匀速圆周运动:



确定轨迹圆心位置的方法:





带电粒子在磁场中做圆周运动时间和转过圆心角的求解方法:



带电粒子在有界磁场中的临界与极值问题的解法:

当某种物理现象变化为另一种物理现象,或物体从一种状态变化为另一种状态时,发生这种质的飞跃的转折态通常称为临界状态,涉及临界状态的物理问题叫做临界问题,产生临界状态的条件叫做临界条件,临界问题能有效地考查学生多方面的能力,在高考题中屡见不鲜。认真分析系统所经历的物理过程,找出与临界状态相对应的临界条件,是解答这类题目的关键,寻找临界条件,方法之一是从最大静摩擦力、极限频率、临界角、临界温度等具有临界含义的物理量及相关规律人手:方法之二是以题目叙述中的一些特殊词语如“恰好”、“刚好”、“最大”、“最高”、“至少”为突破口,挖掘隐含条件,探求临界位置或状态。如:
(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。据此可以确定速度、磁感应强度、轨迹半径、磁场区域面积等方面的极值。
(2)当速度v一定时,弧长(或弦长)越大,圆周角越大,则带电粒子在有界磁场巾运动的时间越长。(前提条件是弧是劣弧)
(3)当速率v变化时,圆周角大的,运动时间越越长。

“动态圆”问题的解法:

 1.入射粒子不同具体地说当入射粒子的比荷不同时,粒子以相同的速度或以相同的动能沿相同的方向射人匀强磁场时,粒子在磁场中运动的周期必不相同;运动的轨迹半径,在以不同的速度入射时不相同,以相同动能入射时可能不同。
2.入射方向不同相同的粒子以相同的速率沿不同方向射人匀强磁场中,粒子在磁场中运动的轨道中,运动周期是相同的,但粒子运动径迹所在空间位置不同,所有粒子经过的空间区域在以入射点为圆心,运动轨迹圆的直径为半径的球形空间内。当磁场空间有界时,粒子在有界磁场内运动的时间不同,所能到达的最远位置不同,从而形成不同的临界状态或极值问题,此类问题中有两点要特别注意:一是旋转方向对运动的影响,二是运动中离入射点的最远距离不超过2R,因R是相同的,进而据此可利用来判定转过的圆心角度、运动时间等极值问题,其中l是最远点到入射点间距离即轨迹上的弦长。
3.入射速率不同
相同的粒子从同一点沿同一方向以不同的速率进入匀强磁场中,虽然不同速率的粒子运动半径不同,但圆心却在同一直线上,各轨迹圆都相切于入射点。在有界磁场中会形成相切、过定点等临界状态,运动时间、空间能到达的范围等极值问题。当粒子穿过通过入射点的直线边界时,粒子的速度方向相同,偏向角相同,运动时间也相同。
4.入射位置不同
相同的粒子以相同的速度从不同的位置射入同一匀强磁场中,粒子在磁场中运动的周期、半径都相同,但在有界磁场中,对应于同一边界上的不同位置,会造成粒子在磁场巾运动的时间不同,通过的路程不同,出射方向不同,从而形成不同的临界状态,小同的极值问题。
5.有界磁场的边界位置变化
相同粒子以相同的速度从同定的位置出发,途经有界磁场Ⅸ域,若磁场位置发生变化时,会引起粒子进入磁场时的入射位置或相对磁场的入射方向发生变化,从而可能引起粒子在磁场中运动时间、偏转角度、出射位置与方向等发生变化,进而形成临界与极值问题。


发现相似题
与“如图所示,ABC为竖直平面内的光滑绝缘轨道,其中AB为倾斜直轨...”考查相似的试题有: