本试题 “【物理部分选做题】如图,一质量为M的物块静止在桌面边缘,桌面离水平地面的高度为h。一质量为m的子弹以水平速度v0射入物块后,以水平速度v0/2射出。重力加速...” 主要考查您对平抛运动
动量守恒定律的应用
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
平抛运动的定义:
将物体以一定的初速度沿水平方向抛出,不考虑空气阻力,物体只在重力作用下所做的运动,叫做平抛运动。
平抛运动的特性:
以抛出点为坐标原点,水平初速度V0,竖直向下的方向为y轴正方向,建立如图所示的坐标系,在该坐标系下,对任一时刻t:
①位移
分位移(水平方向),(竖直方向);
合位移,(φ为合位移与x轴夹角)。
②速度
分速度(水平方向),Vy=gt(竖直方向);
合速度,(θ为合速度V与x轴夹角)。
③平抛运动时间:(取决于竖直下落的高度)。
④水平射程:(取决于竖直下落的高度和初速度)。
类平抛运动:
(1)定义当物体所受的合外力恒定且与初速度垂直时,物体做类平抛运动。
(2)类平抛运动的分解方法
①常规分解法:将类平抛运动分解为沿初速度方向的匀速直线运动和垂直于初速度方向(即沿合力的方向)的匀加速直线运动,两分运动彼此独立,互不影响,且与合运动具有等时性。
②特殊分解法:对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度分解为,,初速度分解为,然后分别在x、y方向上列方程求解。
(3)类平抛运动问题的求解思路
根据物体受力特点和运动特点判断该问题属于类平抛运动问题——求出物体运动的加速度——根据具体问题选择用常规分解法还是特殊分解法求解。
(4)类抛体运动
当物体在巨力作用下运动时,若物体的初速度不为零且与外力不在一条直线上,物体所做的运动就是类抛体运动。
在类抛体运动中可采用正交分解法处理问题,基本思路为:
①建立直角坐标系,将外力、初速度沿这两个方向分解。
②求出这两个方向上的加速度、初速度。
③确定这两个方向上的分运动性质,选择合适的方程求解。
从“六性”把握动量守恒定律的应用方法:
1.条件性
动量守恒定律的成立是有条件的,只有当系统满足动量守恒的条件时才能利用方程式进行计算。
2.矢量性
动量守恒方程是一个矢量方程。对于作用前后物体的运动方向都在同一直线上的问题,应选取统一的正方向,凡是与选取正方向相同的动量为正,相反为负。若方向未知,可设为与正方向相同列动量守恒方程,通过解得结果的正负,判定未知量的方向。
3.参考系的同一性速度
具有相对性,公式中的均应对同一参考系而言,一般均取对地的速度。
4.状态的同一性
相互作用前的总动量,这个“前”是指相互作用前的某一时刻,所以均是此时刻的瞬时速度,同理 应是相互作用后的某一时刻的瞬时速度。
5.整体性
动量守恒定律是针对一个物体系统而言的,具有系统的整体性。
6.普适性
它不仅适用于两个物体所组成的系统,也适用于多个物体组成的系统;不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统。
临界与极值问题的解法:
在动量守恒定律的应用中,常常会遇到相互作用的两物体相距最近、避免相碰和物体开始反向运动等临界问题。分析临界问题的关键是寻找临界状态,临界状态的出现是有条件的,这种条件就是临界条件。临界条件往往表现为某个(或某些)物理量的特定取值。在与动量相关的临界问题中,临界条件常常表现为两物体的相对速度关系与相对位移关系,这些特定关系的判断是求解这类问题的关键。
“人船模型”的解题规律:
“人船模型”是动量守恒定律的拓展应用,它把速度和质量的关系推广到质量和位移的关系,这样给我们提供了一种解题思路和解决问题的方法。人船问题的适用条件是:两个物体组成的系统(当有多个物体组成系统时,可以先转化为两个物体组成的系统)动量守恒,系统的合动量为零。
这种模型中涉及两种题型,一种题型是求解某物体在相互作用过程中通过的位移,此题型中需根据动量守恒、位移关系得到两个关系求解,如在图中,人从船头走到船尾时由动量守恒可得:
再由图中几何关系有
可得人船的位移分别为
另一种题型是求某一时刻物体的速度,这种题型是先要由动量守恒求得两物体的一个速度关系,再由能量守恒得到两物体的另一个速度关系,从而求得物体的瞬时速度(或与瞬时速度相关的物理量)。
与“【物理部分选做题】如图,一质量为M的物块静止在桌面边缘,桌...”考查相似的试题有: