本试题 “如图所示,带电小球在匀强磁场中沿光滑绝缘的圆弧形轨道的内侧来回往复运动,它向左或向右通过最低点时( )A.速度相同B.加速度相同C.所受洛仑兹力相同D....” 主要考查您对向心力
牛顿第二定律
磁场对运动电荷的作用:洛伦兹力、左手定则
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
向心力的定义:
在圆周运动中产生向心加速度的力。。
向心力的特性:
1、向心力
总是指向圆心,产生向心加速度,向心力只改变线速度的方向,不改变速度的大小,大小,方向总是指向圆心(与线速度方向垂直),方向时刻在变化,是一个变力。向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供。
2、轻绳模型
Ⅰ、轻绳模型的特点:
①轻绳的质量和重力不计;
②可以任意弯曲,伸长形变不计,只能产生和承受沿绳方向的拉力;
③轻绳拉力的变化不需要时间,具有突变性。
Ⅱ、轻绳模型在圆周运动中的应用
小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题:
①临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力:
②小球能通过最高点的条件:(当时,绳子对球产生拉力)
③不能通过最高点的条件:(实际上小球还没有到最高点时,就脱离了轨道)
3、轻杆模型:
Ⅰ、轻杆模型的特点:
①轻杆的质量和重力不计;
②任意方向的形变不计,只能产生和承受各方向的拉力和压力;
③轻杆拉力和压力的变化不需要时间,具有突变性。
Ⅱ、轻杆模型在圆周运动中的应用
轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况:
①小球能通过最高点的临界条件:(N为支持力)
②当时,有(N为支持力)
③当时,有(N=0)
④当时,有(N为拉力)
知识点拨:
向心力是从力的作用效果来命名的,因为它产生指向圆心的加速度,所以称它为向心力。它不是具有确定性质的某种类型的力。相反,任何性质的力都可以作为向心力。实际上它可是某种性质的一个力,或某个力的分力,还可以是几个不同性质的力沿着半径指向圆心的合外力。对一个物体进行受力分析的时候,是不需要画向心力的,向心力是效果力。
安培力与洛伦兹力:
洛伦兹力作用下力学问题的解决方法:
(1)涉及洛伦兹力的动力学问题中,因洛伦兹力的大小和方向与物体的运动状态有关,在分析物体的运动过程时,需将运动对受力的影响、受力对运动的影响综合考虑来确定物体的运动性质及运动过程,此类问题中往往还会出现临界状态,需分析临界状态下满足的条件。
(2)在涉及洛伦兹力的能量问题中,因洛伦兹力不做功,系统能量的转化取决于其他力做功的情况,但需考虑洛伦兹力对最终运动状态的影响。
(3)在定性判定涉及洛伦兹力的非匀变速运动过程中,可利用运动的合成与分解来定性地判定通过的位移、运动的时间等问题。
与“如图所示,带电小球在匀强磁场中沿光滑绝缘的圆弧形轨道的内...”考查相似的试题有: