本试题 “在真空环境中,原来匀速直线运动的电子进入到与它运动方向垂直的匀强磁场中,在洛伦兹力的作用下,形成圆弧运动轨迹,下面的说法中正确的是( ) A.电子所受...” 主要考查您对带电粒子在电场中运动的综合应用
磁场对通电导线的作用:安培力、左手定则
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
电场中无约束情况下的匀速圆周运动:
1.物体做匀速圆周运动的条件从力与运动的关系来看,物体要做匀速圆周运动,所受合外力必须始终垂直于物体运动的方向,而且大小要恒等于物体所需的向心力。冈此,物体做匀速圆周运动时必须受到变力的作用,或者不受恒力的作用,或者恒力能被平衡。
2.在静电力作用下的匀速圆周运动在不考虑带电粒子的重力作用时,带电粒子有两种情况可以做匀速圆周运动。
(1)在带有异种电荷的同定点电荷周围。
(2)在等量同种点电荷的中垂面上,运动电荷与场源电荷异性。在这种情境中,还要求运动电荷所具有的初速度要与所受到的电场力垂直,且满足合外力等于所需向心力的条件。否则运动电荷可能做直线运动、椭圆运动等。
3.有重力参与的匀速圆周运动重力是一恒力,带电粒子要做匀速圆周运动,重力必须被平衡,一种方式是利用水平支撑面的弹力,一种方式是利用变化的电场力的某一分力。
带电粒子所受重力的处理方法:
是否考虑重力要依据具体情况而定:
(1)微观粒子:如电子、质子、α粒子、离子等,除有说明或明确的暗示外,一般不考虑重力(但不能忽略质量)。
(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示外,一般都不能忽略重力。
(3)有些情况下是否考虑粒子的重力需要用假设法从粒子的运动上来分析,若考虑粒子的重力,粒子的运动与题目给定的运动状态不符合,则不需考虑重力;若不考虑粒子所受到的重力,粒子不能完成题目给定的运动过程就必须考虑重力。
(4)在给定具体数据的情况下还可以通过定量计算来选择是否考虑重力的作用,一般说来重力与电场力相差两个甚至两个以上的数量级,粒子的重力就可以忽略。
匀强电场与重力场的复合场问题的处理方法:
1.动力学观点的两种方法
(1)正交分解法:处理这种运动的基本思想与处理偏转运动是类似的,可以将此复杂的运动分解为两个互相正交的比较简单的直线运动,然后再按运动合成的观点去求出复杂运动的有关物理量。
(2)等效“重力”法:将重力与电场力进行合成,如图所示,则等效于“重力”,等效于“重力加速度”
的方向,等效于“重力”的方向,即在重力场中竖直向下的方向。
2.功能观点的解决方法
(1)从功能观点出发分析带电粒子的运动问题时,在对带电粒子受力情况和运动情况进行分析的基础上,再考虑应用恰当的规律解题。如果选用动能定理,要分清有几个力做功,做正功还是负功,是恒力做功还是变力做功,以及初、未状态的动能。
(2)如果选用能垃守恒定律解题,要分清有多少种形式的能参与转化,哪种形式的能增加,哪种形式的能减少,并注意电场力做功与路径无关。
带电粒子在交变电场中运动问题的解决方法:
带电粒子在极板问加速或偏转时,若板间所加电压为一交变电压,则粒子在板间的运动可分两种情况处理:一是粒子在板间运动时间t远小于交变电压的周期T;二是粒子在板间运动时间t与交变电压变化周期 T相差不大甚至t>T。
第一种情况下需采用近似方法处理,可认为在粒子运动的整个过程的短暂时问内,板间电压恒等于粒子入射时的电压,即在粒子运动过程中,板间电压按恒压处理,且等于粒子入射时的瞬时电压。
第二种情况下粒子的运动过程较为复杂,可借助于粒子运动的速度图像。物理图像是表达物理过程、规律的基本工具之一,用图像反映物理过程、规律,具有直观、形象的特点,带电粒子在交变电场中运动时,受电场力作用,其加速度、速度等均做周期性变化,借助图像来描述它在电场中的运动情况,可直观展示物理过程,从而获得启迪,快捷地分析求解。在有交变电场作用下带电粒子运动的问题中,有一类重要问题是判定带电粒子能从极板间穿出的条件或侧移量、偏转角范围等问题。而解决此类问题的关键是找出粒子恰好能从板间飞出的临界状态:恰好从极板边缘飞出,并将其转换为临界状态方程。
带电粒子在接地极板间运动问题的解决方法:
当粒子在平行金属板间运动时,若一个极板接地,会对粒子的运动造成什么影响呢?这需分两种情况来考虑:
(1)粒子运动过程巾与极板之间无接触,极板接地只是确定极板电势的高低,这种情况下极板接地与否对粒子的运动不产生影响。
(2)一个极板接地,当运动电荷与另一极板接触而使电荷量变化,则接地的极板也就会与大地之问发生电荷的转移,从而确保两极板所带电荷量相等,但电荷量变化时,极间电场也随之发生变化。
安培力与洛伦兹力:
通电导线在安培力作用下运动方向的判定方法:
要判定通电导线在安培力作用下的运动,首先必须清楚导线所在位置磁场的分布情况,然后才能结合左手定则准确判定导线的受力情况,进而确定导线的运动方向。常用的方法如下: 1.电流元法
(1)同一磁场中的弯曲导线
把整段弯曲导线分为多段直线电流元,先用左手定则判定每段电流元受力的方向,然后判定整段导线所受合力的方向,从而确定导线的运动方向,如在图中,要判定导线框abcd的受力可将其分为四段来判定,若将导线框换作导线环时,可将其分为多段直线电流元。
(2)不同磁场区域中的直线电流当直导线处于不同的磁场区域中时,可根据导线本身所处的物理情景,将导线适当分段处理,如图甲中,要判定可自由运动的通电直导线AB在蹄形磁铁作用下的运动情况时,以蹄形磁铁的中轴线OO’为界,直导线在OO’两侧所处的磁场截然不同,则可将AB以OO’为分界点分为左右两段来判定。
2.特殊位置法因电流所受安培力的方向是垂直于电流和磁场所决定的平面的,虽然电流与磁场之间夹角不同时电流所受安培力大小不同,但所受安培力的方向是不变的 (要求电流从平行于磁场的位置转过的角度不超过 180。)。故可通过转动通电导线到某个便于分析的特殊位置,然后判定其所受安培力的方向,从而确定其运动方向。如在上图甲中,初始位置磁场在平行于电流方向上的分量对电流无作用力,但一旦离开初始位置,此磁场分量就会对电流产生作用力,如上图乙所示。但此分量对电流在转动过程中作用力的方向不方便判定.可将此导线转过90。,此时电流方向与该磁场分量方向垂直,用左手定则很容易判定出受力方向,如上图丙所示,
3.等效法
(1)从磁体或电流角度等效
环形电流可以等效成小磁针,通电螺线管可以等效成条形磁铁或多个环形电流,反过来等效也成立。将环形电流与小磁针相互等效时,它们的位置关系可以认为是小磁针位于环形电流的中心处,N、S极连线与环面垂直,且N、S极与电流方向遵从安培定则。如在图中,两通电圆环同心,所在平面垂直,要判定可自南转动的圆环,I2的运动情况,可将其等效为一小磁针。
(2)从磁感线分布情况的角度等效
根据要判定的电流或磁体所在处的磁感线分布,将其所在处的磁场等效为某一能够在该处产生类似磁场的场源电流或磁体,然后再用电流之间或磁体之间相互作用的规律来判定。如在图中,导线AB所在处的磁感线分布与位于其下方与纸面垂直的通电直导线在该处产生的磁感线类似(注意是类似而不是相同),所以可以将蹄形磁铁等效为一通电直导线进而进行判定。
4.结论法
当两电流之间或两等效电流之间发生相互作用时,可利用电流之间相互作用的规律直接判定,只是同前所述,此法应慎用。
(1)两平行直线电流在相互作用过程中,无转动趋势,同向电流互相吸引,反向电流互相排斥;
(2)两不平行的直线电流互相作用时,有转到平行且电流方向相同的趋势。
5.转换研究对象法
定性分析磁体在电流磁场作用下如何运动的问题,可先分析电流在磁体磁场中所受的安培力,然后由牛顿第三定律,确定磁体所受电流磁场的作用力,从而确定磁体所受的合力及运动方向。如在图中要判定磁铁所受电流的作用力,可以分析磁铁对电流的作用力。
安培力作用下力学问题的解决方法:
由于安培力的方向总是垂直于电流方向与磁场方向决定的平面,即F一定垂直于B和I,但B和I不一定垂直。因此涉及安培力的问题常呈现于三维空间中,要解决这类问题,需从合适的方位将立体图改画为二维平面图,再通过受力分析及运动情况分析,结合平衡条件或牛顿运动定律解题。
与“在真空环境中,原来匀速直线运动的电子进入到与它运动方向垂...”考查相似的试题有: