本试题 “某观赏鱼池塘中养殖大量的红鲫鱼与金鱼,为了估计池中两种鱼数量情况,养殖人员从池中捕出红鲫鱼和金鱼各1000只,并给每只鱼作上不影响其存活的记号,然后放...” 主要考查您对用样本估计总体
众数、中位数、平均数
古典概型的定义及计算
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
样本估计总体的定义:
用样本的频率分布去估计总体的频率分布就是用样本估计总体。
用样本估计总体的特点:
用样本估计总体时,样本容量越大,样本对总体的估计也就越精确。相应地,搜集、整理、计算数据的工作量也就越大,随机抽样是经过数学证明了的可靠的方法,它对于估计总体特征是很有帮助的.
用样本估计总体方法总结:
用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布,在计数和计算时一定要准确,在绘制小矩形时,宽窄要一致,通过频率分布表和频率分布直方图可以对总体作出估计。
众数:
一组数据中,出现次数最多的数据叫做这组数据的众数。
中位数:
一组数据按大小依次排列,把处在最中间位置的一个数据(或中间两个数据的平均数)叫做这组数据的中位数。
平均数:
如果有几个数,那么叫做这几个数的平均数。
如果在几个数中,那么叫做这几个数的加权平均数。
中位数的特点:
中位数不受少数几个极端值的影响,这在某些情况下是一个优点,但是它对极端值的不敏感有时也会成为缺点。
平均数、众数和中位数的作用:
平均数、众数和中位数都叫统计量,它们在统计中,有着广泛的应用。平均数、中位数、众数都是描述数据的集中趋势的“特征数”,平均数、中位数和众数从不同侧面给我们提供了同一组数据的面貌。
关于平均数、中位数、众数的选取:
(1)分析数据平中众,比较接近选平均,相差较大看中位,频数较大用众数;
(2)所有数据定平均,个数去除数据和,即可得到平均数;
(3)大小排列知中位;
(4)整理数据顺次排,单个数据取中问,双个数据两平均;频数最大是众数。
基本事件的定义:
一次试验连同其中可能出现的每一个结果称为一个基本事件。
等可能基本事件:
若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件。
古典概型:
如果一个随机试验满足:(1)试验中所有可能出现的基本事件只有有限个;
(2)每个基本事件的发生都是等可能的;
那么,我们称这个随机试验的概率模型为古典概型.
古典概型的概率:
如果一次试验的等可能事件有n个,那么,每个等可能基本事件发生的概率都是;如果某个事件A包含了其中m个等可能基本事件,那么事件A发生的概率为
。
古典概型解题步骤:
(1)阅读题目,搜集信息;
(2)判断是否是等可能事件,并用字母表示事件;
(3)求出基本事件总数n和事件A所包含的结果数m;
(4)用公式求出概率并下结论。
求古典概型的概率的关键:
求古典概型的概率的关键是如何确定基本事件总数及事件A包含的基本事件的个数。
与“某观赏鱼池塘中养殖大量的红鲫鱼与金鱼,为了估计池中两种鱼...”考查相似的试题有: