返回

高中一年级物理

首页
  • 计算题
    如图所示,一个竖直放置的圆锥筒可绕其中心轴OO′转动,筒内壁粗糙,筒口半径和筒高分别为R和H,筒内壁A点的高度为筒高的一半,内壁上有一质量为m的小物块。求
    (1)当筒不转动时,物块静止在筒壁A点受到的摩擦力和支持力的大小;
    (2)当物块在A点随筒做匀速转动,且其所受到的摩擦力为零时,筒转动的角速度。

    本题信息:2012年四川省期中题物理计算题难度较难 来源:马凤霞
  • 本题答案
    查看答案
本试题 “如图所示,一个竖直放置的圆锥筒可绕其中心轴OO′转动,筒内壁粗糙,筒口半径和筒高分别为R和H,筒内壁A点的高度为筒高的一半,内壁上有一质量为m的小物块。求...” 主要考查您对

圆锥摆

力的分解

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 圆锥摆
  • 力的分解

圆锥摆的知识:

圆锥摆模型的结构特点——一根质量和伸长可以不计的线,系一个可以视为质点的摆球,在水平面内做匀速圆周运动,且在摆线沿顶点位置不变的圆锥面上运动。


圆锥摆的特点:

1、圆锥摆模型的受力特点——只受两个力:竖直向下的重力(mg)和沿摆线方向的拉力(F),二力的合力就是摆球做圆周运动的向心力(Fn),如图所示。

2、向心力和向心加速度的计算
设摆球的质量为m,摆长为l,与竖直方向的夹角为θ,摆球的线速度、角速度、周期和频率依次为v、ω、T和f。如图所示,根据不同的条件
向心力可以表示为:
向心加速度可表示为:
3、摆线拉力的计算计算
摆线的拉力,有两种基本思路:
①当θ角已知时,
②当θ角未知时,
4、周期T、频率f和角速度ω的计算
根据向心加速度公式,有。式中为摆球的轨道平面到悬点的距离,即圆锥摆的高度。由这些公式可知,高度相同的圆锥摆,即等高圆锥摆的T、f和ω相等,与m、l和θ无关。
5、漏斗摆:物体在光滑的漏斗形容器内壁的某水平面上做匀速圆周运动。漏斗摆的力学特点:物体只受两个力,竖直向下的重力mg,垂直于漏斗壁的弹力,两个力的合力水平指向转轴,其向心力。如图所示。

①向心加速度的计算
,θ角一定,故an恒定。
②周期T、角速度ω、线速度v的计算(设匀速圆周运动的平面离漏斗尖端距离为h)
,得
,得
,得
可见,h增大,线速度增大,角速度减小,周期增大。


结构特点:
一根质量和伸长可以不计的线,系一个可以视为质点的摆球,在水平面内作匀速圆周运动。

受力特点:
只受两个力:竖直向下的重力 mg 和沿摆线方向的拉力 F 。两个力的合力,就是摆球作圆周运动的向心力 F n


力的合成与分解:

(1)定义:求几个力的合力的过程叫力的合成,求一个力的分力的过程叫力的分解。
(2)力的合成与分解的具体方法
a.作图法:选取统一标度,严格作出力的图示及平行四边形,然后用统一标度去度量各个力的大小;
b.计算法:根据平行四边形定则作出示意图,然后利用解三角形的方法求合力或分力的大小。一般要求会解直角三角形。

力的分解的几种情况:




分解方法:



几种按效果分解的实例:





由力的三角形定则求力的最小值:

(1)当已知合力F的大小、方向及一个分力F1的方向时,另一个分力F2最小的条件是:两个分力垂直,如图甲。最小值
(2)当已知合力F的方向及一个分力F1的大小、方向时,另一个分力F2最小的条件是:所求分力F2与合力F垂直,如图乙。最小值
 
(3)当已知合力F的大小及一个分力F1的大小时,另一个分力F2最小的条件是:已知大小的分力F1与合力 F同方向。最小值

由圆的切线求力方向的极值:

(1)当已知两分力F1、F2的大小时,合力,的方向与较大分力间夹角有最大值,与较小分力间夹角有最小值。如图所示,设两分力中F1较大,则合力F与F1之间最大夹角θ满足
(2)当已知合力F与其中一个分力F1的大小时,若F >F1,则另一个分力F2与合力F的方向间夹角有一最大值。如图所示,其最大夹角θ满足。若F<F1时,则另一个分力F2与合力F间夹角无极值,可在0~180之间变化:当F1与F同向时分力F2与合力F之间夹角最大,为180;当F1与F反向时分力F2与合力 F之间夹角最小,为0,但两分力间夹角有最大值,其最大值满足


发现相似题
与“如图所示,一个竖直放置的圆锥筒可绕其中心轴OO′转动,筒内壁...”考查相似的试题有: