使用任何机械都不省功。
功的原理:
1.忽略机械自重和摩擦时,使用简单机械所做的功等于不使用机械而直接用手做的功。或者说使用机械不省功。如果直接用手把重为G的物体提升一个高度h,手使用的力就是G,手移动的距离就是h。手做的功是W1=G·h。如图所示,使用动滑轮,手用的力变了G/2(不考虑动滑轮的重及摩擦),手移动的距离变了2h。
使用动滑轮时手做的功Gh。可见,W2=W1,即有:使用机械时对物体做的功等于不使用机械时而直接对物体做的功。结论:在不考虑机械的重力和相关的摩擦力时,使用机械不省功——功的原理。
2.功的原理对于任何机械都适用,它是成立在一种“理想化的状态”前提下的。例如,杠杆、滑轮都是不考虑机械自身的重力及工作时的摩擦力,而这些又都是客观存在的,所以在应用功的原理进行计算时,是一种“理想化”状态下的计算。
3.使用简单机械可以省力,或者可以省距离,但省力必然费距离,省距离必然费力,即力跟物体在力的方向上通过的距离的乘积是一个不变量。例如,动滑轮做功,由于有两根绳子承重,所以可以省一半的力,但绳端却要移动两倍的距离,因此,将功定义为力和物体在力的方向上移动的距离的乘积。有时使用机械,即不省力,也不费力,但可以使做功方便,如改变力的方向。
机械效率的定义:
有用功跟总功的比值叫做机械效率;
计算公式:η=
机械效率的意义:(1)机械效率的功率是标志机械做功性能好坏的物理量,机械效率越高,这个机械的性能越好。
(2)机械效率的高度并不决定使用机械是省力还是费力,效率高只说明有用功在总功所占的比例;省力还是费力是指做一定的有用功时,所用动力的大小。机械效率高不一定省力。
功,功率和机械效率的比较:
物理量 |
物理意义 |
定义 |
符号 |
公式 |
单位 |
说明 |
功 |
做功即能量的转化 |
有力作用在物体上,并且物体在力的方向上移动了一段距离,就说力对物体做了功 |
W |
W=Fs |
J |
l. 功率大小由功和时间共同决定,单独强调某一方面是错误的 2.功率和机械效率是两个不同的物理量,它们之问没有直接关系 |
功率 |
做功快慢 |
单位时间内完成的功 |
P |
|
W(国际单位) kW,MW(常用单位) |
机械效率 |
反映机械性能的物理量 |
有用功占总功的总值 |
η |
|
无 |
汽车的机械效率和功率: 机械效率与功率是两个完全不同的概念。
这两个物理量是从不同方面反映机械性能的,它们之间没有必然的联系。
功率大表示机械做功快;机械效率高表示机械对总功的利用率高。功率大的机械不一定机械效率高。内燃机车功率可以达到几千千瓦,但效率只有30%r~ 40%,反之,机械效率高的机械功率不一定大。安装在儿童玩具汽车里的电动机效率可达80%,但功率却只有凡瓦特。
定义:
弹性:受力会发生形变,不受力时又恢复到原来的形状,物体的这种性质叫做弹性;
弹力:是由于物体发生弹性形变而受到的力,例如:压力和支持力。
弹力的特点:
(1)弹力产生在直接接触并发生弹性形变的物体之间,任何物体只要发生弹性形变就一定会产生弹力。
(2)弹力方向总是与作用在物体上的使物体产生形变的外力方向相反。
(3)弹力的大小与物体的弹性强弱、形变大小有关,形变越大,弹力越大,形变消失弹力也随之消失。
弹力的形式:
因物体的形变有多种多样,所以产生的弹力也有各种不同的形式。例如,把一重物放在塑料板上,被压弯的塑料板要恢复原状,产生向上的弹力,这就是它对重物的支持力.将一物体挂在弹簧上,物体把弹簧拉长,被拉长的弹簧要恢复原状,产生向上的弹力,这就是它对物体的拉力。不仅塑料板、弹簧等能够发生形变,许多物体都能够发生形变,对与它接触的物体产生弹力。我们通常所说的压力、支持力、绳子的拉力等,其实质就是弹力。
弹力产生条件:
1.两物体互相接触
2.物体发生弹性形变(包括人眼不能观察到的微小形变)需要注意的是:任何物体只要发生了弹性形变,就一定会对与它接触的物体产生弹力。一旦超出弹性形变范围,就会彻底失去弹力。(即是超过了弹性限度,塑性物体除外)
举例:木块A靠在墙壁上,若作用一个推力,在木块A上,则木块对墙壁有挤压,发生形变,此时A与墙壁间有弹力作用。
弹力的方向:
弹力的方向与物体形变方向相反,具体情况有以下几种。
①轻绳的弹力方向沿绳指向绳收缩的方向。
②压力、支持力的方向总跟接触的面垂直,面与面接触,点与面接触,都是垂直于面;点与点的接触要找两接触点的公切面,弹力垂直于这个公切面指向被支持物。
③二力杆件(即只有杆的两端受力,中间不受力(包括杆本身的重力也忽略不计),叫二力杆件),弹力必沿杆的方向。一般杆件,受力较为复杂,应根据具体条件分析。
④杆:弹力方向是任意的,有它所受外力和运动状态决定。
弹力的大小跟形变的大小的关系。在弹性限度内,形变越大,弹力也越大;形变消失,弹力就随着消失。对于拉伸形变(或压缩形变)来说,伸长(或缩短)的长度越大,产生的弹力就越大。对于弯曲形变来说,弯曲的越厉害,产生的弹力就越大。对于扭转形变来说,扭转的越厉害,产生的弹力就越大。
弹力的本质:
弹力的本质是分子间的作用力。当物体被拉伸或压缩时,分子间的距离便会发生变化,使分子间的相对位置拉开或靠拢,这样,分子间的引力与斥力就不会平衡,出现相吸或相斥的倾向,而这些分子间的吸引或排斥的总效果,就是宏观上观察到的弹力。如果外力太大,分子间的距离被拉开得太多,分子就会滑进另一个稳定的位置,即使外力除去后,也不能再回到复原位,就会保留永久的变形。这便是弹力的本质。
弹力的区别:
弹力是按照力的性质命名的。而压力,支持力,拉力则是由力的效果命名的。这是两个完全不同的概念。因此,弹力和压力,支持力,拉力之间没有明确的关系。弹力不一定是压力,支持力,拉力。
例如,套在同一光滑竖直杆的两个环形磁铁,其相同的磁极相对,两个磁铁均处于静止状态。对上面的磁铁进行受力分析,磁铁受本身的竖直向下的重力作用和竖直向上的排斥力作用,二力为一对平衡力。此时,向上的排斥力便作为支持力。此支持力就不是弹力。另外,由牛顿第三定律得,大小等于向上的排斥力,方向向下的磁力也作用于下面的磁铁上。此时,这个向下的磁力就是上面的磁铁给它的向下的压力。这个压力也不是弹力。
又如,在两根光滑平行直导轨间,分布有竖直方向且等距离分布的方向不同的匀强磁场,导轨上有一个宽度与磁场相同的金属框。当磁场匀速运动时,线框就会受到安培力作用而运动起来。此时,安培力就是线框运动的合外力,也就是拉力。此拉力也不是弹力。
所以,不能笼统地说,弹力就是压力,支持力,拉力。要具体情况具体分析。具题目意思来定。
弹性形变与塑性形变:
1.弹性形变物体由于在力的作用下发生形变,当力撤去后,物体义恢复原状,如弹簧、橡皮条等,这样的形变叫弹性形变,外力消失后能白动恢复原来形状的性质叫弹性。
2.塑性形变也有一些物体在发生形变后,不能恢复原状,如一块泥巴,用笔杆插一个洞或用手一压,泥巴不会恢复原状,我们把这样的形变叫做塑性形变。物体变形后不能自动恢复原来的彤状的性质叫做塑性。例如:被拉长的弹簧,如果超出了其弹性限度,弹簧被拉长后,发生改变,但当外力消失后,弹簧无法恢复原状,这样的形变就是塑性形变。
重力:
定义 |
由于地球的吸引而使物体受到的力 |
大小 |
G=mg |
方向 |
竖直向下 |
作用点 |
物体的重心 |
施力物体 |
地球 |
重力方向的应用 |
重锤线 |
重心 |
重力在物体上的作用点 |
失重:
定义:物体在引力场中自由运动时有质量而不表现重量的一种状态,又称零重力。失重有时泛指零重力和微重力环境。
所谓失重,就是物体不被引力所作用。所谓重力,是物体所受地球的引力的一个分力(大小几乎等于引力)。引力的大小与质量成正比,与距离的平方成反比。就质量一定的天体来说,物体离它越远,所受它的引力越小,即重力越小,在足够远的距离上,它的引力可以忽略不计。在失重状态下,人体和其他物体受到很小的力就能飘浮起来。
超重:
定义:超重是物体所受限制力(拉力或支持力)大于物体所受重力的现象。
只要物体相对于地球有竖直向上的加速度时,就会产生超重现象
当人造地球卫星、宇宙飞船、航天飞机等航天器在加速上升阶段,其中的人和物体处于超重状态,他们对其下方物体的压力是其自身重力的几倍。
定义:在使用过程中,轴随物体一起移动的滑轮(“动” 指轴心的位置在移动而不是转动)
动滑轮的工作特点:
实质 |
|
特点 |
可以省一半的力,但不能改变力的方向 |
重物提升的高度h与绳子通过的距离s的关系 |
s=2h |