本试题 “不定项选择下列说法中正确的是( )A.只要知道水的摩尔质量和水分子的质量,就可以计算出阿伏伽德罗常数B.悬浮微粒越大,在某一瞬间撞击它的液体分子数就越...” 主要考查您对阿伏伽德罗常数
布朗运动
分子间的相互作用力
玻意耳定律(等温定律)
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
阿伏加德罗常量:
摩尔的任何物质含有的微粒数都相同,这个数的测量值NA=6.02×1023 mol-1。是联系微观世界和宏观世界的桥梁。它把物质的摩尔质量、摩尔体积这些宏观物理量和分子质量、分子体积这些微观物理量联系起来了。
布朗运动:
1.概念:悬浮在液体中的固体颗粒所做的无规则运动
2.条件:任何固体微粒,在任何温度下悬浮在液体中都可做布朗运动
3.起因:液体分子对微粒撞击的不平衡
4.特点:①只要液体不干涸,布朗运动就不停息
②微粒越小,布朗运动越显著
③液体温度越高,布朗运动越显著
5.意义:布朗运动虽不是分子的运动,但反映了分子运动的情况
6.备注:①分子的运动是无规则的,但不是无规律的,遵从统计规律
②布朗粒子的等时位置连线图不是粒子运动的轨迹
布朗运动和热运动的比较:
分子间有空隙的依据:
分子可以永不停息地运动
气体容易被压缩
水与酒精混合后总体积减小
物体的热胀冷缩等
分子力:
1.概念:分子间同时存在着引力和斥力,分子力是二者的合力。
2. 存在依据:分子间有空隙,但液体仍有一定的体积,固体有一定的形状和体积等;固体很难被拉断,固体、液体很难被压缩等
3.分子间引力与斥力都随分子间距离的减小而增大,但斥力随距离变化快,分子力与分子间距离不是单调关系
玻意耳定律:
1.概念:一定质量的某种气体,在温度不变的条件下其压强与体积变化时的关系,叫做气体的等温变化
2.规律:一定质量的气体,在温度不变的情况下,它的压强跟体积成反比—— 玻意耳定律3.公式:
4.图像:
图线为双曲线,同一气体的两条等温线比较,双曲线顶点离坐标原点远的温度高,即图线为过原点的直线,同一气体比较,斜率()大的温度高,即。
5.条件:m一定,p不太大,T不太低
6.微观解释:一定质量的理想气体,分子的总数是一定的,在温度保持不变时,分子的平均动能保持不变,气体的体积减小到原来的几分之一,气体的密度就增大到原来的几倍,因此压强就增大到原来的几倍,反之亦然,所以气体的压强与体积成反比。
液柱移动问题的求解方法:
液柱移动问题的分析方法
(1)假设推理法:根据题设条件,假设发生某种特殊的物理现象或物理过程,运用相应的物理规律及有关知识进行严谨的推理,得出正确的答案。巧用假设推理法可以化繁为简,化难为易,简捷解题。
(2)温度不变情况下的液柱移动问题的特点是:在保持温度不变的情况下改变其他题设条件,从而引起封闭气体液柱的移动,或液面的升降,或气体体积的增减。解决这类问题通常假设液柱不移动,或液面不升降,或气体体积不变,然后从假设出发,运用玻意耳定律等有关知识进行推论,求得正确答案。
(3)用液柱或活塞隔开两部分气体,当气体温度变化时,液柱或活塞是否移动?如何移动? 此类问题的特点是:气体的状态参量p、V、T都发生了变化,直接判断液柱或活塞的移动方向比较困难,通常先进行气体状态的假设,然后应用查理定律可以简单地求解:其一般思路为:
①先假设液柱或活塞不发生移动,两部分气体均做等容变化:
②对两部分气体分别应用查理定律的分比形式,求出每部分气体压强的变化量△p,并加以比较。
a.如果液柱两端的横截面积相等,且△p均大于零,意味着两部分气体的压强均增大,则液柱向△p值较小的一方移动;若△p均小于零,意味着两部分气体的压强均减小,则液柱向压强减小量较大的一方(即|△p|较大的一方)移动;若△p相等,则液柱不移动。
b.如果液柱两端的横截面积不相等,则应考虑液柱两端的受力变化(△pS)。,若△p均大于零,则液往向△pS较小的一方移动;若△p均小于零,则液桂向|△pS|值较大的一方移动;若△p等于零,则液柱不移动。
与“不定项选择下列说法中正确的是( )A.只要知道水的摩尔质量...”考查相似的试题有: