返回

初中数学

首页
  • 解答题
    已知点A(a,b)为双曲线y=
    6
    x
    (x>0)图象上一点.
    (1)如图1所示,过点A作AD⊥y轴于D点,点P是x轴任意一点,连接AP.求△APD的面积.
    (2)以A(a,b)为直角顶点作等腰Rt△ABC,如图2所示,其中点B在点C的左侧,若B点的坐标为B(-1,0),且a、b都为整数时,试求线段BC的长.
    (3)在(2)中,当等腰Rt△ABC的直角顶点A(a,b)在双曲线上移动时,B、C两点也随着移动,试用含a,b的式子表示C点坐标;并证明在移动过程中OC2-OB2的值恒为定值.

    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “已知点A(a,b)为双曲线y=6x(x>0)图象上一点.(1)如图1所示,过点A作AD⊥y轴于D点,点P是x轴任意一点,连接AP.求△APD的面积.(2)以A(a,b)为直角顶...” 主要考查您对

求反比例函数的解析式及反比例函数的应用

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 求反比例函数的解析式及反比例函数的应用

反比例函数解析式的确定方法:
由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

反比例函数的应用:
建立函数模型,解决实际问题。



用待定系数法求反比例函数关系式的一般步骤是:
①设所求的反比例函数为:y= (k≠0);
②根据已知条件(自变量与函数的对应值)列出含k的方程;
③由代人法解待定系数k的值;
④把k值代人函数关系式y= 中。

反比例函数应用一般步骤:
①审题;
②求出反比例函数的关系式;
③求出问题的答案,作答。
发现相似题
与“已知点A(a,b)为双曲线y=6x(x>0)图象上一点.(1)如图1...”考查相似的试题有: