返回

初中三年级数学

首页
  • 解答题
    请画出正三菱柱的三视图.

    本题信息:2012年广东省期中题数学解答题难度较难 来源:丁慧芳(初中数学)
  • 本题答案
    查看答案
本试题 “请画出正三菱柱的三视图.” 主要考查您对

投影

尺规作图

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 投影
  • 尺规作图
投影的定义:
一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。
投影包括平行投影和中心投影。
平行投影:由平行光线(如太阳光线)形成的投影称为平行投影。
中心投影:由同一点发出的光线所形成的投影称为中心投影。

平行投影特征
平行投影的投影线是平行的。
①等高的物体垂直于地面放置时,在太阳光下,他们的影子一样长;
②等长的物体平行于地面放置时,他们在太阳光下的影子一样长,且影长等于物体本身的长度;
③两个物体竖直在地面上,两个物体及它们各自的影子及光线构成的两个直角三角形相似,相似三角形对应边成比例。
已知物体影子可以确定光线,同一时刻关线是平行的光线下行成的,过已知物体顶端及影子顶端作直线,过其他物体顶端作此线的平行线,便可求出同一时刻其他物体的影子。

中心投影特征:
中心投影的投影线交于一点。
①等高的物体垂直于地面放置时,在灯光下,离点光源近的物体的影子短;离点光源远的物体影子长。
②等长的物体平行于地面放置时,一般情况下,离点光源越近,影子长;离点光源越远,影子越短,但不会小于物体本身的长度。
③点光源、物体边缘的点以及它的影子上的对应点在同一条直线上,根据其中两个点,就可以求出第三点的位置。
④空间图形经过中心投影后,直线变成直线,但平行线可能变成了垂直相交的直线,
中心投影后的图形与原图形相比虽然改变较多但直观性强,看起来与人的视觉效果一致。
⑤如果一个平面图形所在的平面与投射面平行,那么中心投影后得到的图形与原图形也是平行的,并且中心投影后得到的图形与原图形相似。


技术提示:
投影不是影,影是不透明的,只有轮廓,投影是透明的,也包括各面上的棱.投影图包括的棱,看到的用实线画,看不到的用虚线画.例如,三棱锥在水平面上的投影包括棱。

平行投影与中心投影的区别与联系:

区别 联系
平行投影 平行投影下,同一时刻,所有物体的影子
朝同一方向,且物体与影长之比皆相等。
①都随投影面的变化,影子发生变化;
②都可以根据物体与影子的对应点判定光线的来源与方向。
中心投影 中心投影下,同一时刻,物体的影子方向及大小,
跟它离点光源的位置及距离密切相关。

尺规作图:
是指限定用没有刻度的直尺和圆规来完成的画图。
一把没有刻度的直尺看似不能做什么,画一个圆又不知道它的半径,画线段又没有精确的长度。
其实尺规作图的用处很大,比如单用圆规找出一个圆的圆心,量度一个角的角度,等等。
运用尺规作图可以画出与某个角相等的角,十分方便。
尺规作图的中基本作图:
作一条线段等于已知线段;
作一个角等于已知角;
作线段的垂直平分线;
作已知角的角平分线;
过一点作已知直线的垂线。
还有:
已知一角、一边做等腰三角形
已知两角、一边做三角形
已知一角、两边做三角形
依据公理:
还可以根据已知条件作三角形,一般分为已知三边作三角形,已知两边及夹角作三角形,已知两角及夹边作三角形等,作图的依据是全等三角形的判定定理:SSS,SAS,ASA等。
注意:
保留全部的作图痕迹,包括基本作图的操作程序,只有保留作图痕迹,才能反映出作图的操作是否合理。
尺规作图方法:
任何尺规作图的步骤均可分解为以下五种方法:
·通过两个已知点可作一直线。
·已知圆心和半径可作一个圆。
·若两已知直线相交,可求其交点。
·若已知直线和一已知圆相交,可求其交点。
·若两已知圆相交,可求其交点。

尺规作图简史:
“规”就是圆规,是用来画圆的工具,在我国古代甲骨文中就有“规”这个字.“矩”就像现在木工使用的角尺,由长短两尺相交成直角而成,两者间用木杠连接以使其牢固,其中短尺叫勾,长尺叫股.
矩的使用是我国古代的一个发明,山东历城武梁祠石室造像中就有“伏羲氏手执矩,女娲氏手执规”之图形.矩不仅可以画直线、直角,加上刻度可以测量,还可以代替圆规.甲骨文中也有矩字,这可追溯到大禹治水(公元前2000年)前.
《史记》卷二记载大禹治水时“左准绳,右规矩”.赵爽注《周髀算经》中有“禹治洪水,……望山川之形,定高下之势,……乃勾股之所由生也.”意即禹治洪水,要先测量地势的高低,就必定要用勾股的道理.这也说明矩起源于很远的中国古代.
春秋时代也有不少著作涉及规矩的论述,《墨子》卷七中说“轮匠(制造车子的工匠)执其规矩,以度天下之方圆.”《孟子》卷四中说“离娄(传说中目力非常强的人)之明,公输子(即鲁班,传说木匠的祖师)之巧,不以规矩,不能成方圆.”可见,在春秋战国时期,规矩已被广泛地用于作图、制作器具了.由于我国古代的矩上已有刻度,因此使用范围较广,具有较大的实用性.
古代希腊人较重视规、矩在数学中训练思维和智力的作用,而忽视规矩的实用价值.因此,在作图中对规、矩的使用方法加以很多限制,提出了尺规作图问题.所谓尺规作图,就是只有限次地使用没有刻度的直尺和圆规进行作图.
古希腊的安那萨哥拉斯首先提出作图要有尺寸限制.他因政治上的纠葛,被关进监狱,并被判处死刑.在监狱里,他思考改圆成方以及其他有关问题,用来打发令人苦恼的无所事事的生活.他不可能有规范的作图工具,只能用一根绳子画圆,用随便找来的破木棍作直尺,当然这些尺子上不可能有刻度.另外,对他来说,时间是不多了,因此他很自然地想到要有限次地使用尺规解决问题.后来以理论形式具体明确这个规定的是欧几里德的《几何原本》.由于《几何原本》的巨大影响,希腊人所崇尚的尺规作图也一直被遵守并流传下来.
由于对尺规作图的限制,使得一些貌似简单的几何作图问题无法解决.最著名的是被称为几何三大问题的三个古希腊古典作图难题:立方倍积问题、三等分任意角问题和化圆为方问题.当时很多有名的希腊数学家,都曾着力于研究这三大问题,虽然借助于其他工具或曲线,这三大难题都可以解决,但由于尺规作图的限制,却一直未能如愿以偿.以后两千年来,无数数学家为之绞尽脑汁,都以失败而告终.直到1637年笛卡尔创立了解析几何,关于尺规作图的可能性问题才有了准则.到了1837年万芝尔首先证明立方倍积问题和三等分任意角问题都属于尺规作图不可能问题.1882年林德曼证明了π是无理数,化圆为方问题不可能用尺规作图解决,这才结束了历时两千年的数学难题公案.