返回

高中一年级数学

首页
  • 解答题
    已知, 且
    (1) 求函数的解析式;
    (2) 当时, 的最小值是-4 , 求此时函数的最大值, 并求出相应的的值.

    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “已知,, 且(1) 求函数的解析式;(2) 当时,的最小值是-4 , 求此时函数的最大值, 并求出相应的的值.” 主要考查您对

向量数量积的含义及几何意义

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 向量数量积的含义及几何意义

两个向量的夹角的定义:

对于非零向量,作称为向量的夹角,当=0时,同向,当=π时,反向,
时,垂直。

两个向量数量积的含义:

如果两个非零向量,它们的夹角为,我们把数量叫做的数量积(或内积或点积),记作:,即
上的投影。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。

两个向量数量积的几何意义

数量积等于的模上的投影的乘积。


向量数量积的性质:

设两个非零向量
(1)
(2)
(3)
(4)
(5)当同向时,;当反向时,;当为锐角时,为正且不同向,;当为钝角时,为负且不反向,