返回

高中三年级物理

首页
  • 探究题
    下列说法正确的是
    [     ]

    A.布朗运动就是液体分子的热运动
    B.一定质量的理想气体在温度不变的条件下,压强增大,则外界对气体做功
    C.机械能可以全部转化为内能
    D.分子间距离等于分子间平衡距离时,分子势能最小
    E.有规则外形的物体是晶体
    F.一切自然过程总是向分子热运动的无序性增大的方向进行
    (2)如图所示,一定质量的理想气体发生如图所示的状态变化,状态A与状态B的体积关系为VA___________VB(选填“大于”、“小于”、“等于”); 若从A状态到C状态的过程中气体对外做了100J的功,则气体的内能如何变化?变化量是多少?此过程中吸热还是放热?

    本题信息:2010年同步题物理探究题难度较难 来源:马凤霞
  • 本题答案
    查看答案
本试题 “下列说法正确的是[ ]A.布朗运动就是液体分子的热运动B.一定质量的理想气体在温度不变的条件下,压强增大,则外界对气体做功C.机械能可以全部转化为内能D....” 主要考查您对

布朗运动

分子势能

热力学第一定律

热力学第二定律

有序和无序

理想气体状态方程

晶体和非晶体

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 布朗运动
  • 分子势能
  • 热力学第一定律
  • 热力学第二定律
  • 有序和无序
  • 理想气体状态方程
  • 晶体和非晶体

布朗运动:

1.概念:悬浮在液体中的固体颗粒所做的无规则运动
2.条件:任何固体微粒,在任何温度下悬浮在液体中都可做布朗运动
3.起因:液体分子对微粒撞击的不平衡
4.特点:①只要液体不干涸,布朗运动就不停息
②微粒越小,布朗运动越显著
③液体温度越高,布朗运动越显著
5.意义:布朗运动虽不是分子的运动,但反映了分子运动的情况
6.备注:①分子的运动是无规则的,但不是无规律的,遵从统计规律
②布朗粒子的等时位置连线图不是粒子运动的轨迹


布朗运动和热运动的比较:


分子势能:

分子势能则是组成物质的分子间由于有相互作用力而具有由它们的相对位置决定的势能。分子势能的大小与分子间的距离有关,即与物体的体积有关。分子势能的变化与分子间的距离发生变化时分子力做正功还是做负功有关。
1、当分子间的距离r>r0时,分子间作用力表现为引力,随着分子间距离的增大,分子力做负功,所以分子势能随分子间距离的增大而增大;
2、当分子间的距离r<r0时,分子间作用力表现为斥力,随着分子间距离的减小,分子力做负功,所以分子势能随分子间距离的减小而增大;
3、当分子间的距离r=r0时,分子间作用力合力为零,此时分子势能最小;
4、若取无穷远处(即分子间距r≥10r0时,此时分子间作用力可忽略不计)分子势能为零,则分子势能Ep与分子间距r的关系图象如图所示。


分子力曲线与分子势能曲线的对比:


利用分子势能图像解题:

分子势能与分子间距离有关。当改变分子间距离时,分子力做功,分子势能也随之改变。当分子力做正功时,分子势能减小;当分子力做负功时,分子势能增大。结合分子势能图像,可以更清楚地理解。
(1)当r>r0时,分子间的作用力表现为引力,分子间的距离增大时,分子力做负功,因而分子势能随分子间距离的增大而增大。
(2)当r<r0时,分子间的作用力表现为斥力,分子间的距离增大时,分子力做正功,因而分子势能随分子间距离的增大而减小。
(3)当r≥10r0(数量级为10一9m)时,分子间的作用力可以忽略。如果选取此时的分子势能为零,那么分子势能与分子间距离的关系可用下图表示。注意,当r=r0时,分子势能最小。分子势能最小并不等同于分子势能为零。分子势能有正负,这里的正负号表示大小,不表示方向。


热力学第一定律:

1、内容:物体内能的增量(ΔU)等于外界对物体做的功(W)和物体吸收的热量(Q)的总和。
2、表达式:W+Q=ΔU。
3、符号法则:外界对物体做功,W取正值,物体对外界做功,W取负值;物体吸收热量,Q取正值,物体放出热量,Q取负值;物体内能增加,ΔU取正值,物体内能减少,ΔU取负值。

热力学第一定律在理想气体中的应用方法:

 1.功W的正负分析
若体积V增大,则W取“-”;若体积V减小,则形取“+”。
注意,若气体向真空中自由膨胀时,则W=0。
2.△U的正负分析
一定质量理想气体的内能只与温度有关。
若温度T增大,△U取“+”;若温度T减小,△U取“-”;若T不变,贝△U=0。
3.Q的正负分析:
绝热Q=0,吸热Q取“+”,放热Q取“-”。
4.气体状态变化还应结合分析
5.由图像讨论气体的功、热量和内能
(1)等温线(如图所示):一定质量的理想气体,

,等温降压膨胀,内能不变,吸热等于对外做的功。
,等容升温升压,不做功,吸热等于内能增加。
,等压降温压缩,放热等于外界做功和内能减少量。
(2)等容线(如图所示):一定质量的理想气体,
状态及能量变化同等温线分析。
(3)等压线(如图所示):一定质量的理想气体.等温升压压缩,内能不变,外界做功等于放热;等压升温膨胀,吸热等于内能增加量和对外做的功;等容降温降压,内能减小量等于放热。


热力学第二定律:

1.两种表述:
(1)按传热的方向性表述:
①内容:热量不能自发地从低温物体传到高温物体
②含义:
a.热量会自发地从高温物体传到低温物体,在传递过程中不会对其他物体产生影响;
b.如果有其他作用,热量有可能从低温物体传到高温物体;
c.如果没有其他作用,热量不可能从低温物体传到高温物体
(2)按机械能与内能转化的方向性表述:
①内容:不可能从单一热源吸收热量,使之完全变成功,而不产生其他影响
②含义:
a.从单一热源吸收热量,一般来说只有部分转化为机械能,所以第二类永动机是不可能制成的;
b.机械能转化为内能是自然的,可以全部转化;
c.如果引起其他变化,可能从单一热源吸收热量并把它全部用来做功
2.实质:这两种表述是等价的,都揭示了自然界的基本规律:一切与热现象有关的宏观过程都具有方向性,即一切与热现象有关的宏观的自然过程都是不可逆的
3.微观解释:
(1)微观意义:一切自发过程总是沿着分子热运动的无序性增大的方向进行
(2)熵:
①概念:物理学中用字母Ω表示一个宏观状态所对应的微观状态的数目,用字母S表示熵,有,式中k叫做玻尔兹曼常量
②熵增加原理:
a.内容:在任何自然过程中,一个孤立系统的总熵不会减小。如果过程可逆,则熵不变;如果过程不可逆,则熵增加。
b.从微观的角度看,热力学第二定律是一个统计规律:一个孤立系统总是从熵小的状态向熵大的状态发展,而熵值较大代表着较为无序,所以自发的宏观过程总是向无序度更大的方向发展


热力学第二定律的理解及应用方法:

(1)传热的方向性。热传导的过程是有方向性的,这个过程可以向一个方向自发地进行(热量会自发地从高温物体传到低温物体),但是向相反的方向却不能自发地进行。
(2)第二类永动机不可能制成。我们把没有冷凝器,只有单一热源,从单一热源吸收热量全部用来做功,而不引起其他变化的热机称为第二类永动机。这表明机械能和内能的转化过程具有方向性:机械能可以全部转化成内能,内能却不能全部转化成机械能,而不引起其他变化。即热机的效率不可能达到100%。
(3)热力学第二定律的表述:
①热量不能自发地从低温物体传到高温物体(按传热的方向性表述)。
②不可能从单一热源吸收热量,使之完全变成功,而不产生其他影响(按机械能和内能转化的方向性表述)。
③第二类永动机是不可能制成的。热力学第二定律使人们认识到:自然界中进行的涉及热现象的宏观过程都具有方向性。它揭示了有大量分子参与的宏观过程的方向性,使得它成为独立于热力学第一定律的一个重要的自然规律。
(4)能量耗散。自然界的能量是守恒的,但是有些能量便于利用,有些能量不便于利用。很多事例证明,我们无法把流散的内能重新收集起来加以利用,这种现象叫做能量耗散。它从能量转化的角度反映出自然界中的宏观现象具有方向性。


知识扩展:

热力学第一定律是和热现象有关的物理过程中能量守恒的特殊表达形式及热量与内能改变的定量关系。而热力学第二定律指出了能量转化与守恒能否实现的条件和过程进行的方向,指出了一切变化过程的自然发展是不可逆的,除非靠外界影响。所以二者相互联系,又相互补充。
热力学第二定律的微观意义:

一切自发过程总是沿着分子热运动的无序性增大的方向进行。
理想气体状态方程:

1.表述:一定质量气体的状态变化时,其压强和体积的乘积与热力学温度的比是个常数.
2.表达式:
这个常数C由气体的种类与气体的质量决定,或者说这个常数由物质的量决定,与其他参量无关
3.适用条件:质量一定、理想气体
4.与实验定律的关系:
气体的三个实验定律是理想气体状态方程的特例:

5.两个推论:
(1)密度方程:

上式与气体的质量无关,即不要求质量恒定
(2)道尔顿分压定律:
一定质量的气体分成n份(或将n份气体合为一份)时
此式要求气体的质量不变,即前后总质量相同

活塞类问题的解法:

 1.一般思路
(1)分析题意,确定对象:热学研究对象(一定质量的气体);力学研究对象(活塞、缸体或系统)。
(2)分析物理过程,对热学对象依据气体实验定律列方程;对力学对象依据牛顿运动定律列方程。
(3)挖掘隐含条件,列辅助方程。
(4)联立求解,检验结果。
2.常见类型
(1)系统处于力学的平衡状态,综合利用气体实验定律和平衡方程求解。
(2)系统处于力学的非平衡状态,综合利用气体实验定律和牛顿运动定律求解。
(3)容器与封闭气体相互作用满足守恒定律的条件(如动量守恒、能量守恒、质量守恒等)时,可联立相应的守恒方程求解。
(4)多个相互关联的气缸分别密闭几部分气体时,可分别研究各部分气体,找出它们各自遵循的规律,列出相应的气体状态方程,再列出各部分气体压强之间及体积之问的关系式,联立求解。

变质量气体问题的处理方法:

气体三定律与气体的状态方程都强调“一定质量的某种气体”,即气体状态变化时,气体的质量不能变。用气体三定律与气体状态方程研究变质量气体问题时有多种不同的处理方法。
(1)口袋法:给初状态或者末状态补接一个口袋,把变化的气体用口袋收集起来,从而保证质量不变。
(2)隔离法:对变化部分和不变部分隔离.只对不变部分进行研究,从而实现被研究的气体质量不变。
(3)比较常数法:气体常数与气体质量有关,质量变化,气体常数变化;质量不变,气体常数不变。根据各个状态的已知状态参量计算出各个状态下的气体常数C,然后进行比较。
(4)利用推论法:气体的密度方程不要求质量恒定,可由此得到相应状态的密度,再结合体积等解决问题。也可利用分压定律来研究变质量气体的问题。具体来说,有以下四种典型的情景,可以通过选择适当的对象化变质量为定质量:
①充气问题
向球、轮胎中充气是一个典型的气体变质量问题,只要选择球内原有气体和即将打入的气体作为研究对象,就可把充气过程中的气体质量变化问题转化为定质量气体的状态变化问题。
②抽气问题
从容器内抽气的过程中,容器内的气体质量不断减小,这属于变质量问题。分析时,将每次抽气过程中抽出的气体和剩余气体看成整体来作为研究对象,质量不变,抽气过程中的气体可看成是等温膨胀过程。
③灌气问题
将一个大容器里的气体分装到多个小容器中的问题也是一个典型的变质量问题。分析这类问题时,可以把大容器中的气体和多个小容器中的气体看成整体来作为研究对象,将变质量问题转化为定质量问题。
④漏气问题
容器漏气过程中气体的质量不断发生变化,属于变质量问题,不能用理想气体状态方程求解。如果选容器内剩余气体为研究对象,便可使问题变成一定质量的气体状态变化,可用理想气体状态方程求解。


晶体与非晶体:

固体可以分为晶体和非晶体两大类。晶体又可分为单晶体和多晶体。



区分晶体、多晶体、非晶体的方法:

固体物质是晶体还是非晶体,要看其是否具有确定的熔点;区分单晶体和多晶体,要看其物理性质是各向异性还是各向同性。


发现相似题
与“下列说法正确的是[ ]A.布朗运动就是液体分子的热运动B.一定...”考查相似的试题有: