返回

初中数学

首页
  • 解答题
    如图,C、E分别在AB、DF上,小华想知道∠ACE和∠DEC是否互补,但是他有没有带量角器,只带了一副三角尺,于是他想了这样一个办法:首先连接CF,再找出CF的中点O,然后连接EO并延长EO和直线AB相交于点B,经过测量,他发现EO=BO,因此他得出结论:∠ACE和∠DEC互补,而且他还发现BC=
    魔方格
    EF.以下是他的想法,请你填上根据.
    小华是这样想的:因为CF和BE相交于点O,
    根据______,得出∠COB=∠EOF;
    而O是CF的中点,那么CO=FO,又已知EO=BO,
    根据______,得出△COB≌△FOE,
    根据______,得出BC=EF,
    根据______,得出∠BCO=∠F,
    既然∠BCO=∠F根据______,得出ABDF,
    既然ABDF,根据______,得出∠ACE和∠DEC互补.
    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “如图,C、E分别在AB、DF上,小华想知道∠ACE和∠DEC是否互补,但是他有没有带量角器,只带了一副三角尺,于是他想了这样一个办法:首先连接CF,再找出CF的中点O...” 主要考查您对

平行线的判定

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 平行线的判定
平行线的概念
在同一个平面内,不相交的两条直线叫做平行线。平行用符号“∥,如“AB∥CD”,读作“AB平行于CD”。
注意:
①平行线是无限延伸的,无论怎样延伸也不相交。
②当遇到线段、射线平行时,指的是线段、射线所在的直线平行。

平行线的判定平行线的判定公理:
(1)两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。
(2)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。
(3)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。
还有下面的判定方法:
(1)平行于同一条直线的两直线平行。
(2)垂直于同一条直线的两直线平行。
(3)平行线的定义。

判定方法的逆应用:
在同一平面内,两直线不相交,即平行。
两条直线平行于一条直线,则三条不重合的直线互相平行。
两直线平行,同位角相等。
两直线平行,内错角相等。
两直线平行,同旁内角互补。
6a⊥c,b⊥c则a∥b。