本试题 “已知a<b,则有以下结论①a+c<b+c;②;③c﹣a>c﹣b;④a|c|<b|c|,其中正确的结论的序号是[ ]A.①③B.①②③C.①③④D.①②③④” 主要考查您对不等式的性质
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
不等式的性质:
①如果x>y,那么y<x;如果y<x,那么x>y;(对称性)
②如果x>y,y>z;那么x>z;(传递性)
③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)
④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)
⑤如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z<y÷z;
⑥如果x>y,m>n,那么x+m>y+n;(充分不必要条件)
⑦如果x>y>0,m>n>0,那么xm>yn;
⑧如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<y的n次幂(n为负数)
或者说,不等式的基本性质有:
①对称性;
②传递性:
③加法单调性:即同向不等式可加性:
④乘法单调性:
⑤同向正值不等式可乘性:
⑥正值不等式可乘方:
⑦正值不等式可开方:
⑧倒数法则。
原理:
①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。
②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)<G(x)与不等式F(x)+H(x)<G(x)+H(x)同解。
③如果不等式F(x)<G(x) 的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)<G(x)与不等式H(x)F(x)<H( x )G(x) 同解;如果H(x)<0,那么不等式F(x)<G(x)与不等式H (x)F(x)>H(x)G(x)同解。
④不等式F(x)G(x)>0与不等式同解;不等式F(x)G(x)<0与不等式同解。
与“已知a<b,则有以下结论①a+c<b+c;②;③c﹣a>c﹣b;④a|c|<b...”考查相似的试题有: