返回

小学六年级数学

首页
  • 判断题
    整数乘法的交换律、结合律、分配律对于分数乘法同样适用。
    [     ]

    本题信息:2012年专项题数学判断题难度一般 来源:张思媛
  • 本题答案
    查看答案
本试题 “整数乘法的交换律、结合律、分配律对于分数乘法同样适用。[ ]” 主要考查您对

运算定律和简便算法

分数乘法的意义和分数乘法的计算法则

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 运算定律和简便算法
  • 分数乘法的意义和分数乘法的计算法则
学习目标:
1、掌握运算定律,并能运用运算定律和性质进行正确、合理、灵活的计算。
2、养成良好审题习惯,提高计算能力。
运算定律:
名称 内容 字母表示 用数举例
加法交换律 两个数相加,交换加数的位置,和不变。 a+b=b+a 25+14=14+25
加法结合律 三个数相加,先把前两数相加,再同第三个数相加,
或者先把后两数相加,再同第一个数相加,它们的和不变。
a+b+c=
a+(b+c)
20+14+36=
20+(14+36)
乘法交换律 两个数相乘,交换因数的位置,它们的积不变。 a×b=b×a 10×12=12×10
乘法结合律 三个数相乘,先把前两个数相乘,再同第三个数相乘,
或者先把后两个数相乘,再同第一个数相乘,它们的积不变。
a×b×c=
a×(b×c)
12×25×4=
12×(25×4)
乘法分配律 两个数的和同一个数相乘,可以把两个加数分别和这个
数相乘,再把两个积相加,结果不变。
(a+b)×c=
a×c+b×c
(12+15)×4=
12×4+15×4

运算性质:

名称

内容

字母表示

用数举例

减法的性质 一个数连续减去几个数等于一个数减去这几个数的和 a-b-b=
a-(b+c)
250-18-52=
250-(18+52)
除法的性质 一个数连续除以几个数(0除外)等于一个数除以这几个数的积 a÷b÷c=
a÷(b×c)
180÷4÷25=
180÷(4×25)

分数乘法有两个意义:
1.分数乘以整数:和整数乘法意义相同,就是求几个相同加数的运算
2.一个数乘以分数:是求一个数的几分之几是多少
分数乘法法则:
1.分数乘整数时,用分数的分子和整数相乘的积做分子,分母不变。(要约成最简分数)
2.分数乘分数,用分子相乘的积做分子,分母相乘的积做分母,能约分的要约成最简分数(在计算中约分)。
但分子和分母不能为零。

分数与整数乘法意义:
不完全相同:
分数乘以整数的意义 就和整数乘法的意义相同;
分数乘以分数的意义 就和整数乘法的意义不相同:
乘法的意义就是求几个相同加数和的简便运算。小数乘法和分数乘法的意义之所以教材中出现两种说法(分数乘整数的意义和整数乘法的意义相同,一个数成分数的意义就是求这个数的几分之几是多少),实际上是“意义的扩展”比如:6*2/3表示6的2/3。
再在进一步理解:就是把6平均分成3份,表示这样2份的数。实际上也就是2/3个6。但基于说法不太符合常理,而改变成人们习惯的说法