返回

初中数学

首页
  • 单选题
    下列说法中,不正确的是(  )
    A.大小不同的两个图形不是全等形
    B.等腰三角形是轴对称图形
    C.负数有平方根
    D.能完全重合的两个图形是全等形

    本题信息:数学单选题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “下列说法中,不正确的是( ) A.大小不同的两个图形不是全等形 B.等腰三角形是轴对称图形 C.负数有平方根 D.能完全重合的两个图形是全等形” 主要考查您对

平方根

全等图形

轴对称

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 平方根
  • 全等图形
  • 轴对称
平方根定义:
如果一个数的平方等于a,则这个数叫做a的平方根,如果x2=a,那么x叫做a的平方根,这里a是x的平方,它是一个非负数,即a≥0。
表示:一个正数有两个平方根,用表示平方根中正的那个,用-表示负的平方根。

性质:
①一个正数如果有平方根,那么必定有两个,它们互为相反数。
显然,如果我们知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。

②如果一个正数x的平方等于a,即x的平方等于a,那么这个正数x叫做a的算术平方根。a
的算术平方根记为,读作“根号a”,a叫做被开方数。

③规定:0的平方根是0。

④负数在实数范围内不能开平方,只有在复数范围内,才可以开平方根。
例如:-1的平方根为±1,-9的平方根为±3。

⑤平方根包含了算术平方根,算术平方根是平方根中的一种。
平方根和算术平方根都只有非负数才有。
被开方数是乘方运算里的幂。
求平方根可通过逆运算平方来求。
开平方:求一个非负数a的平方根的运算叫做开平方,其中a叫做被开方数。
若x的平方等于a,那么x就叫做a的平方根,即正负根号a=正负x


1 至 20 的平方根:
利用长式除法可以求平方根。长式除法需要进行加法,减法,乘法,除法等四则运算。一般计算机软件的运算精度小于20位数字,如要计算平方根到100位,四则运算的精度需100位以上。 利用高精度长式除法可以计算出 1 至 20 的 平方根如下:
=1
≈1.414213562373095048801688724209698078569671875376948073176679737990732478462
≈1.732050807568877293527446341505872366942805253810380628055806979451933016909
=2
≈2.236067977499789696409173668731276235440618359611525724270897245410520925638
≈2.449489742783178098197284074705891391965947480656670128432692567250960377457
≈2.645751311064590590501615753639260425710259183082450180368334459201068823230
≈2.828427124746190097603377448419396157139343750753896146353359475981464956924
=3
≈3.162277660168379331998893544432718533719555139325216826857504852792594438639
≈3.316624790355399849114932736670686683927088545589353597058682146116484642609
≈3.464101615137754587054892683011744733885610507620761256111613958903866033818
≈3.605551275463989293119221267470495946251296573845246212710453056227166948293
≈3.741657386773941385583748732316549301756019807778726946303745467320035156307
≈3.872983346207416885179265399782399610832921705291590826587573766113483091937
≈4
≈4.123105625617660549821409855974077025147199225373620434398633573094954346338
≈4.242640687119285146405066172629094235709015626130844219530039213972197435386
≈4.358898943540673552236981983859615659137003925232444936890344138159557328203
≈4.472135954999579392818347337462552470881236719223051448541794490821041851276

其中,有两数的根号可借由“口诀”记忆: (意思意思而已), (一妻三儿、一起散热)。
全等图形:
能够完全重合的图形叫做全等图形;
全等三角形:
能够完全重合的两个三角形叫做全等三角形。
对应顶点、对应边、对应角:两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
全等三角形的表示:全等用符号“≌”表示,读作“全等于”。
如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。

特征:
全等图形的形状相同、大小相等。
注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。
轴对称的定义:
把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合 ,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。

轴对称的性质:
(1)对应点所连的线段被对称轴垂直平分;
(2)对应线段相等,对应角相等;
(3)关于某直线对称的两个图形是全等图形。


轴对称的判定:
如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
这样就得到了以下性质:
1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
2.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
3.线段的垂直平分线上的点与这条线段的两个端点的距离相等。 
4.对称轴是到线段两端距离相等的点的集合。

轴对称作用:
可以通过对称轴的一边从而画出另一边。
可以通过画对称轴得出的两个图形全等。
扩展到轴对称的应用以及函数图像的意义。

轴对称的应用:
关于平面直角坐标系的X,Y对称意义
如果在坐标系中,点A与点B关于直线X对称,那么点A的横坐标不变,纵坐标为相反数。
相反的,如果有两点关于直线Y对称,那么点A的横坐标为相反数,纵坐标不变。

关于二次函数图像的对称轴公式(也叫做轴对称公式 )
设二次函数的解析式是 y=ax2+bx+c
则二次函数的对称轴为直线 x=-b/2a,顶点横坐标为 -b/2a,顶点纵坐标为 (4ac-b2)/4a

在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质。
譬如,等腰三角形经常添设顶角平分线;
矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;
正方形,菱形问题经常添设对角线等等。
另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,
或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中。


发现相似题
与“下列说法中,不正确的是( ) A.大小不同的两个图形不是全等...”考查相似的试题有: