本试题 “(1)计算:2cos245°+|2-2|-(12)-1(2)解不等式组:x+13≤13-4(x-1)<1(3)解方程:3x+2x2-x=2x-1.” 主要考查您对一元一次不等式组的解法
零指数幂(负指数幂和指数为1)
解分式方程
实数的运算
特殊角三角函数值
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
一元一次不等式组解集:
一元一次不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集。
注:当任何数x都不能使各个不等式同时成立,我们就说这个一元一次不等式组无解或其解集为空集。
例如:
不等式x-5≤-1的解集为x≤4;
不等式x﹥0的解集是所有非零实数。
解法:求不等式组的解集的过程,叫做解不等式组。
一元一次不等式组的解答步骤:
(1)分别求出不等式组中各个不等式的解集;
(2)将这些不等式的解集在同一个数轴上表示出来,找出它们的的公共部分;
(3)根据找出的公共部分写出不等式组的解集,若没有公共部分,说明不等式组无解。
解法诀窍:
同大取大 ;
例如:
X>-1
X>2
不等式组的解集是X>2
同小取小;
例如:
X<-4
X<-6
不等式组的解集是X<-6
大小小大中间找;
例如,
x<2,x>1,不等式组的解集是1<x<2
大大小小不用找
例如,
x<2,x>3,不等式组无解
一元一次不等式组的整数解:
一元一次不等式组的整数解是指在不等式组中各个不等式的解集中满足整数条件的解的公共部分。
求一元一次不等式组的整数解的一般步骤:先求出不等式组的解集,再从解集中找出所有整数解,其中要注意整数解的取值范围不要搞错。
例如
所以原不等式的整数解为1,2。
解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法。
解分式方程注意:
①解分式方程的基本思想是把分式方程转化为整式方程,通过解整式方程进一步求得分式方程的解;
②用分式方程中的最简公分母同乘方程的两边,从而约去分母,但要注意用最简公分母乘方程两边各项时,切勿漏项;
③解分式方程可能产生使分式方程无意义的情况,那么检验就是解分式方程的必要步骤。
实数的运算:
实数包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。
实数可实现的基本运算有加、减、乘、除、乘方等,对非负数(即正数和0)还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。
四则运算封闭性:
实数集R对加、减、乘、除(除数不为零)四则运算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍然是实数。
与“(1)计算:2cos245°+|2-2|-(12)-1(2)解不等式组:x+13≤1...”考查相似的试题有: