返回

高中三年级数学

首页
  • 解答题
    某学校为准备参加市运动会,对本校甲、乙两个田径队中30名跳高运动员进行了测试,并用茎叶图表示出本次测试30人的跳高成绩(单位:cm ),跳高成绩在175cm 以上(包括175cm )定义为“合格”,成绩在175cm 以下(不包括175cm )定义为“不合格” 。

    (1)求甲队队员跳高成绩的中位数;
    (2)如果用分层抽样的方法从甲、乙两队所有的运动员中共抽取5 分,则5 人中“合格”与“不合格”的人数各为多少。
    (3)从甲队178cm 以上(包括178cm )选取两人,至少有一人在186cm 以上(包括186cm )的概率为多少?
    本题信息:2012年模拟题数学解答题难度较难 来源:刘佩
  • 本题答案
    查看答案
本试题 “某学校为准备参加市运动会,对本校甲、乙两个田径队中30名跳高运动员进行了测试,并用茎叶图表示出本次测试30人的跳高成绩(单位:cm ),跳高成绩在175cm 以...” 主要考查您对

分层抽样

频率分布表、频率分布直方图、频率分布折线图、茎叶图

众数、中位数、平均数

古典概型的定义及计算

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 分层抽样
  • 频率分布表、频率分布直方图、频率分布折线图、茎叶图
  • 众数、中位数、平均数
  • 古典概型的定义及计算

分层抽样:

当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比例进行抽样,这种抽样叫做分层抽样,其所分成的各个部分叫做层。
利用分层抽样抽取样本,每一层按照它在总体中所占的比例进行抽取。

不放回抽样和放回抽样:

在抽样中,如果每次抽出个体后不再将它放回总体,称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样.
随机抽样、系统抽样、分层抽样都是不放回抽样 


分层抽样的特点:

(1)分层抽样适用于差异明显的几部分组成的情况;
(2)在每一层进行抽样时,在采用简单随机抽样或系统抽样;
(3)分层抽样充分利用已掌握的信息,使样具有良好的代表性;
(4)分层抽样也是等概率抽样,而且在每层抽样时,可以根据具体情况采用不同的抽样方法,因此应用较为广泛。


常用的抽样方法及它们之间的联系和区别

类别 共同点 各自特点 相互联系 适用范围
简单随机抽样 抽样过程中每个个体被抽取的概率是相同的 从总体中逐个抽取 总体中的个体个数少
系统抽样 将总体均匀分成几个部分,按照事先确定的规则在各部分抽取 在起始部分抽样时采用简单随机抽样 总体中的个体个数多
分层抽样 将总体分成几层,分层进行抽取 各层抽样时采用简单抽样或者相同抽样 总体由差异明显的几部分组成

频率分布:

样本中所有数据(或者数据组)的频率和样本容量的比就是该数据的频率,所有数据(或者数据组)的频率的分布变化规律叫做频率分布,可以用频率分布表,频率分布折线图,茎叶图,频率分布直方图来表示.

频率分布折线图:

如果将频率分布直方图中各相邻的矩形的上底边的中点顺次连接起,就得到一条折线,称这条折线为本组数据的频率折线图。

频数分布表:

反映总体频率分布的表格。
一般地,编制频率分布表的步骤如下:(1)求全距,决定组数和组距;(2)分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间;(3)登记频数,计算频率,列出频率分布表。

茎叶图:

(1)茎是指中间的一列数,叶是从茎的旁边生长出来的数。
(2)制作茎叶图的方法是:将所有两位数的十位数字作为“茎”,个位数字作为“叶”,茎相同者共用一个茎,茎按从小到大的顺序从上向下列出,共茎的叶一般按从大到小(或从小到大)的顺序同行列出;
(3)茎叶图的性质: ①茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况。
②茎叶图不能直接反映总体的分布情况,这就需要通过茎叶图给出的数据求出数据的数字特征,进一步估计总体情况。


茎叶图的性质:

 ①茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况。
②茎叶图不能直接反映总体的分布情况,这就需要通过茎叶图给出的数据求出数据的数字特征,进一步估计总体情况。


作频率分布直方图的步骤:

①求极差,即一组数据中最大值和最小值的差。
②决定组距与组数.将数据分组时,组数应力求合适,以使数据的分布规律能较清楚的呈现出来。这时应注意:a.一般样本容量越大,所分组数越多;b.为方便起见,组距的选择应力求“取整”;c.当样本容量不超过100时,按照数据的多少,通常分成5组~l2组.
③将数据分组.
④计算各小组的频率(),作频率分布表。
⑤画频率分布直方图。


众数:

一组数据中,出现次数最多的数据叫做这组数据的众数。

中位数:

一组数据按大小依次排列,把处在最中间位置的一个数据(或中间两个数据的平均数)叫做这组数据的中位数。

平均数:

如果有几个数,那么叫做这几个数的平均数。
如果在几个数中,那么叫做这几个数的加权平均数。


中位数的特点:

中位数不受少数几个极端值的影响,这在某些情况下是一个优点,但是它对极端值的不敏感有时也会成为缺点。


平均数、众数和中位数的作用:

平均数、众数和中位数都叫统计量,它们在统计中,有着广泛的应用。平均数、中位数、众数都是描述数据的集中趋势的“特征数”,平均数、中位数和众数从不同侧面给我们提供了同一组数据的面貌。

关于平均数、中位数、众数的选取:

(1)分析数据平中众,比较接近选平均,相差较大看中位,频数较大用众数;
(2)所有数据定平均,个数去除数据和,即可得到平均数;
(3)大小排列知中位;
(4)整理数据顺次排,单个数据取中问,双个数据两平均;频数最大是众数。


基本事件的定义:

一次试验连同其中可能出现的每一个结果称为一个基本事件。

等可能基本事件:

若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件。

古典概型:

如果一个随机试验满足:(1)试验中所有可能出现的基本事件只有有限个;
(2)每个基本事件的发生都是等可能的;
那么,我们称这个随机试验的概率模型为古典概型.

古典概型的概率:

如果一次试验的等可能事件有n个,那么,每个等可能基本事件发生的概率都是;如果某个事件A包含了其中m个等可能基本事件,那么事件A发生的概率为


古典概型解题步骤:

(1)阅读题目,搜集信息;
(2)判断是否是等可能事件,并用字母表示事件;
(3)求出基本事件总数n和事件A所包含的结果数m;
(4)用公式求出概率并下结论。

求古典概型的概率的关键:

求古典概型的概率的关键是如何确定基本事件总数及事件A包含的基本事件的个数。


发现相似题
与“某学校为准备参加市运动会,对本校甲、乙两个田径队中30名跳...”考查相似的试题有: