返回

初中三年级数学

首页
  • 单选题
    下列各式计算正确的是
    [     ]

    A.
    B.
    C.
    D.
    本题信息:2006年浙江省中考真题数学单选题难度一般 来源:邵英娜
  • 本题答案
    查看答案
本试题 “下列各式计算正确的是[ ]A.B.C.D.” 主要考查您对

整式的乘法

整式的除法

完全平方公式

分式的加减乘除混合运算及分式的化简

二次根式的乘除

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 整式的乘法
  • 整式的除法
  • 完全平方公式
  • 分式的加减乘除混合运算及分式的化简
  • 二次根式的乘除
单项式和多项式都统称为整式。整式是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母。把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式)。分解因式与整式乘法互逆。 1、单项式与单项式相乘的法则 单项式和单项式相乘,只要将它们的系数,相同字母的幂分别相乘,对于只在一个单项式中出项的字母,则连同它的指数一起作为积的一个因式.注意:单项式与单项式相乘的法则也适用于多个单项式相乘. 2.单项式与多项式相乘的法则 单项式与多项式相乘,只要将单项式分别乘以多项式的各项,再将所得的积相加.即m(a+b+c)=ma+mb+mc 3.多项式与多项式相乘的法则 多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.即(m+n)*(a+b)=ma+mb+na+nb

整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母。单项式和多项式统称为整式。单项式相除,把它们的系数相除,同底数幂的幂相减,作为商的一个因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。 单项式除以多项式,用单项式除以多项式的每一项,再将所得的商相加并合并同类项。


整式的除法法则:
1、同底数的幂相除:法则:同底数的幂相除,底数不变,指数相减。
数学符号表示: (a≠0,m、n为正整数,并且m>n)
2、两个单项式相除,把系数、同底数幂分别相除后,作为商的因式;
对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
3、多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。


整式的除法运算:
单项式÷单项式
单项式相除,把系数、同底数幂分别相除后,作为商的因式;
对于只在被除式中含有的字母,则连同它的指数一起作为商的一个因式。
注:单项式除以单项式主要是通过转化为同底数幂的除法解决的。

多项式÷单项式
多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
说明:多项式(没有同类项)除以单项式,结果的项数与多项式的项数相同,不要漏项。

多项式÷单项式
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
单项式除以多项式,用单项式除以多项式的每一项,再将所得的商相加并合并同类项。


完全平方公式:
两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2

(1)公式中的a、b可以是单项式,也就可以是多项式。
(2)不能直接应用公式的,要善于转化变形,运用公式。
该公式是进行代数运算与变形的重要的知识基础,是因式分解中常用到的公式。该知识点重点是对完全平方公式的熟记及应用。难点是对公式特征的理解(如对公式中积的一次项系数的理解)。


结构特征:
1.左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;
2.左边两项符号相同时,右边各项全用“+”号连接;
左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);
3..公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.

记忆口诀:首平方,尾平方,2倍首尾。


使用误解:
①漏下了一次项;
②混淆公式;
③运算结果中符号错误;
④变式应用难于掌握。

注意事项:
1、左边是一个二项式的完全平方。
2、右边是二项平方和,加上(或减去)这两项乘积的二倍,a和b可是数,单项式,多项式。
3、不论是还是,最后一项都是加号,不要因为前面的符号而理所当然的以为下一个符号。


完全平方公式的基本变形:
(一)、变符号
例:运用完全平方公式计算:
(1)(-4x+3y)2
(2)(-a-b)2
分析:本例改变了公式中a、b的符号,以第二小题为例,处理该问题最简单的方法是将这个式子中的(-a)看成原来公式中的a,将(-b)看成原来公式中的b,即可直接套用公式计算。
解答:
(1)16x2-24xy+9y2
(2)a2+2ab+b2

(二)、变项数:
例:计算:(3a+2b+c)2
分析:完全平方公式的左边是两个相同的二项式相乘,而本例中出现了三项,故应考虑将其中两项结合运用整体思想看成一项,从而化解矛盾。所以在运用公式时,(3a+2b+c)2可先变形为[(3a+2b)+c]2,直接套用公式计算。
解答:9a2+12ab+6ac+4b2+4bc+c2

(三)、变结构
例:运用公式计算:
(1)(x+y)(2x+2y)
(2)(a+b)(-a-b)
(3)(a-b)(b-a)
分析;本例中所给的均是二项式乘以二项式,表面看外观结构不符合公式特征,但仔细观察易发现,只要将其中一个因式作适当变形就可以了,即
(1)(x+y)(2x+2y)=2(x+y)2
(2) (a+b)(-a-b)=-(a+b)2
(3) (a-b)(b-a)=-(a-b)2


分式的加减乘除混合运算:
分式的混合运算应先乘方,再乘除,最后算加减,有括号的先算括号内的。也可以把除法转化为乘法,再运用乘法运算。

分式的化简:借助分式的基本性质,应用换元法、整体代入法等,通过约分和通分来达到简化分式的目的。

分式的混合运算:
在解答分式的乘除法混合运算时,注意两点,就可以了:
注意运算的顺序:按照从左到右的顺序依次计算;
注意分式乘除法法则的灵活应用。


二次根式的乘除法则:
1、二次根式的乘法原则:,即两个二次根式相乘,根指数不变,相乘的结果是一个二次根式或有理式。
2、二次根式的除法原则:,即二次根式相除,就是把被被开方数相除,根指数不变。
有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做有理化根式,也称有理化因式。