返回

初中二年级数学

首页
  • 解答题
    如图,点B、C、E不在同一条直线上,∠BCE=150°,以BC、CE为边作等边三角形,连结BD、AE,

    (1)试说明BD=AE;
    (2)△ACE能否由△BCD绕C点按顺时针方向旋转而得到?若能,指出旋转度数;若不能,请说明理由。
    本题信息:2009年期中题数学解答题难度极难 来源:张玲玲
  • 本题答案
    查看答案
本试题 “如图,点B、C、E不在同一条直线上,∠BCE=150°,以BC、CE为边作等边三角形,连结BD、AE,(1)试说明BD=AE;(2)△ACE能否由△BCD绕C点按顺时针方向旋转而得到...” 主要考查您对

全等三角形的性质

图形旋转

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 全等三角形的性质
  • 图形旋转
全等三角形:
两个全等的三角形,而该两个三角形的三条边及三个角都对应地相等。全等三角形是几何中全等的一种。根据全等转换,两个全等三角形可以是平移、旋转、轴对称,或重叠等。当两个三角形的对应边及角都完全相对时,该两个三角形就是全等三角形。正常来说,验证两个全等三角形时都以三个相等部分来验证,最后便能得出结果。
全等三角形的对应边相等,对应角相等。
①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
②全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;
③有公共边的,公共边一定是对应边;
④有公共角的,角一定是对应角;
⑤有对顶角的,对顶角一定是对应角。

全等三角形的性质:
1.全等三角形的对应角相等。
2.全等三角形的对应边相等。
3.全等三角形的对应边上的高对应相等。
4.全等三角形的对应角的角平分线相等。
5.全等三角形的对应边上的中线相等。
6.全等三角形面积相等。
7.全等三角形周长相等。
8.全等三角形的对应角的三角函数值相等。



定义:
在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转。这个定点叫做旋转中心,转动的角度叫做旋转角。
图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。
图形旋转性质:
(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
旋转对称中心
把一个图形绕着一个点旋转一定的角度后,与原来的图形相吻合,这种图形叫做 旋转对称图形,这个定点叫做 旋转对称中心,旋转的角度叫做 旋转角。(旋转角大于0°小于360°)
发现相似题
与“如图,点B、C、E不在同一条直线上,∠BCE=150°,以BC、CE为边...”考查相似的试题有: