返回

初中数学

首页
  • 解答题
    计算题:
    ①(a-3b2-4•(a-2b-33(结果只含正整数指数幂)
    ②先化简
    2a+1
    a2-1
    ÷
    a2-a
    a2-2a+1
    -
    1
    a+1
    (再取一个你认为合适的a的值代入求值)
    ③已知:
    x+3
    (x-2)2
    =
    A
    x-2
    +
    B
    (x-2)2
    ,求A、B的值.
    ④解方程
    2
    x+1
    +
    3
    x-1
    =
    6
    x2-1

    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “计算题:①(a-3b2)-4•(a-2b-3)3(结果只含正整数指数幂)②先化简2a+1a2-1÷a2-aa2-2a+1-1a+1(再取一个你认为合适的a的值代入求值)③已知:x+3(x-2)2=Ax-2+...” 主要考查您对

零指数幂(负指数幂和指数为1)

解分式方程

分式的加减乘除混合运算及分式的化简

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 零指数幂(负指数幂和指数为1)
  • 解分式方程
  • 分式的加减乘除混合运算及分式的化简
零指数幂定义:任何不等于零的数的零次幂都等于1。
负指数幂的定义:任何不等于零的数的-n(n为正整数)次幂,等于这个数的n次幂的倒数。
指数为1:任何不等于零的数的1次幂,所得结果都等于这个数的本身。
解法:
解分式方程的基本思想是把分式方程转化为整式方程,其一般步骤是:
(1)去分母:分式方程两边同乘以方程中各分母的最简公分母,把分式方程转化为整式方程。
(最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂)
(2)解方程:解整式方程,得到方程的根;
(3)验根:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;
否则,这个解不是原分式方程的解,是原分式方程的增根。
如果分式本身约分了,也要带进去检验。
在列分式方程解应用题时,不仅要检验所得解的是否满足方程式,还要检验是否符合题意。
一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解.
注意:
(1)注意去分母时,不要漏乘整式项。
(2)増根是分式方程去分母后化成的整式方程的根,但不是原分式方程的根。
(3)増根使最简公分母等于0。

分式方程的特殊解法:
换元法:
换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。

解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法。
解分式方程注意:
①解分式方程的基本思想是把分式方程转化为整式方程,通过解整式方程进一步求得分式方程的解;
②用分式方程中的最简公分母同乘方程的两边,从而约去分母,但要注意用最简公分母乘方程两边各项时,切勿漏项;
③解分式方程可能产生使分式方程无意义的情况,那么检验就是解分式方程的必要步骤。


分式的加减乘除混合运算:
分式的混合运算应先乘方,再乘除,最后算加减,有括号的先算括号内的。也可以把除法转化为乘法,再运用乘法运算。

分式的化简:借助分式的基本性质,应用换元法、整体代入法等,通过约分和通分来达到简化分式的目的。

分式的混合运算:
在解答分式的乘除法混合运算时,注意两点,就可以了:
注意运算的顺序:按照从左到右的顺序依次计算;
注意分式乘除法法则的灵活应用。