本试题 “合肥一中为了了解学校食堂的服务质量情况,对在校就餐的1400名学生按5%的比例进行问卷调查,把学生对食堂的“服务满意度”与“价格满意度”都分为五个等级:1级(...” 主要考查您对频率分布表、频率分布直方图、频率分布折线图、茎叶图
标准差、方差
随机事件及其概率
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
频率分布:
样本中所有数据(或者数据组)的频率和样本容量的比就是该数据的频率,所有数据(或者数据组)的频率的分布变化规律叫做频率分布,可以用频率分布表,频率分布折线图,茎叶图,频率分布直方图来表示.
频率分布折线图:
如果将频率分布直方图中各相邻的矩形的上底边的中点顺次连接起,就得到一条折线,称这条折线为本组数据的频率折线图。
频数分布表:
反映总体频率分布的表格。
一般地,编制频率分布表的步骤如下:(1)求全距,决定组数和组距;(2)分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间;(3)登记频数,计算频率,列出频率分布表。
茎叶图:
(1)茎是指中间的一列数,叶是从茎的旁边生长出来的数。
(2)制作茎叶图的方法是:将所有两位数的十位数字作为“茎”,个位数字作为“叶”,茎相同者共用一个茎,茎按从小到大的顺序从上向下列出,共茎的叶一般按从大到小(或从小到大)的顺序同行列出;
(3)茎叶图的性质: ①茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况。
②茎叶图不能直接反映总体的分布情况,这就需要通过茎叶图给出的数据求出数据的数字特征,进一步估计总体情况。
茎叶图的性质:
①茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况。
②茎叶图不能直接反映总体的分布情况,这就需要通过茎叶图给出的数据求出数据的数字特征,进一步估计总体情况。
作频率分布直方图的步骤:
①求极差,即一组数据中最大值和最小值的差。
②决定组距与组数.将数据分组时,组数应力求合适,以使数据的分布规律能较清楚的呈现出来。这时应注意:a.一般样本容量越大,所分组数越多;b.为方便起见,组距的选择应力求“取整”;c.当样本容量不超过100时,按照数据的多少,通常分成5组~l2组.
③将数据分组.
④计算各小组的频率(),作频率分布表。
⑤画频率分布直方图。
方差和标准差的定义:
考察样本数据的分散程度的大小,最常用的统计量是标准差。标准差是样本数据到平均数的一种平均距离,一般用s表示。
设一组数据的平均数为,则,其中s2表示方差,s表示标准差。
一般地,平均数、方差、标准差具有如下性质:
若数据的平均数是,方差为s2,标准差为s.则新数据的平均数是a+b,方差为,标准差为
特别地,如a=1,则新数据的方差、标准差与原数据相同,分别为s2,s。因此,当一组数据均较大且接近某个常数时,可先将每个数同时减去这个常数,再计算这组新数据的方差,它与原数据的方差相等.
方差和标准差的意义:
方差和标准差都是用来描述一组数据波动情况的特征数,常数来比较两组数据的波动大小,方差较大的波动较大,方差较小的波动较小。
用样本的数字特征估计总体的数字特征分两类:
①用样本平均数估计总体平均数.
②用样本方差、标准差估计总体方差、标准差.样本容量越大,估计就越精确.
计算标准差的算法:
(1)算出样本数据的平均数;
(2)算出每个样本数据与样本平均数的差;
(3)算出
(4)算出这n个数的平均数,即为样本方差s2;
(5)算出方差的算术平方根,即为样本标准差s.
随机事件的定义:
在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,随机事件通常用大写英文字母A、B、C等表示。
必然事件的定义:
必然会发生的事件叫做必然事件;
不可能事件:
肯定不会发生的事件叫做不可能事件;
概率的定义:
在大量进行重复试验时,事件A发生的频率总是接近于某个常数,在它附近摆动。这时就把这个常数叫做事件A的概率,记作P(A)。
m,n的意义:事件A在n次试验中发生了m次。
因0≤m≤n,所以,0≤P(A)≤1,必然事件的概率为1,不可能发生的事件的概率0。
随机事件概率的定义:
对于给定的随机事件A,随着试验次数的增加,事件A发生的频率总是接近于区间[0,1]中的某个常数,我们就把这个常数叫做事件A的概率,记作P(A)。
频率的稳定性:
即大量重复试验时,任何结果(事件)出现的频率尽管是随机的,却“稳定”在某一个常数附近,试验的次数越多,频率与这个常数的偏差大的可能性越小,这一常数就成为该事件的概率;
“频率”和“概率”这两个概念的区别是:
频率具有随机性,它反映的是某一随机事件出现的频繁程度,它反映的是随机事件出现的可能性;概率是一个客观常数,它反映了随机事件的属性。
与“合肥一中为了了解学校食堂的服务质量情况,对在校就餐的1400...”考查相似的试题有: