返回

高中数学

首页
  • 解答题
    一位射击选手以往1000发子弹的射击结果统计如下表:
    环数 10 9 8 7 6 5
    频数 250 350 200 130 50 20
    假设所打环数只取整数,试根据以上统计数据估算:
    (1)设该选手一次射击打出的环数为ξ,求P(ξ≥7.5),Eξ;
    (2)他射击5次至多有三次不小于8环的概率;
    (3)在一次比赛中,该选手的发挥超出了按上表统计的平均水平.若已知他在10次射击中,每一次的环数都不小于6,且其中有6环、8环各1个,2个7环,试确定该选手在这次比赛中至少打出了多少个10环.
    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “一位射击选手以往1000发子弹的射击结果统计如下表:环数1098765频数2503502001305020假设所打环数只取整数,试根据以上统计数据估算:(1)设该选手一次射击...” 主要考查您对

n次独立重复试验

离散型随机变量的期望与方差

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • n次独立重复试验
  • 离散型随机变量的期望与方差

独立重复试验:

(1)独立重复试验的意义:做n次试验,如果它们是完全同样的一个试验的重复,且它们相互独立,那么这类试验叫做独立重复试验.
(2)一般地,在n次独立重复试验中,设事件A发生的次数为X,在每件试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为此时称随机变量X服从二项分布,记作 并称p为成功概率.
(3)独立重复试验:若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的.
(4)独立重复试验概率公式的特点:是n次独立重复试验中某 事件A恰好发生k次的概率.其中,n是重复试验的次数,p是一次试验中某事件A发生的概率,k是在n次独立重复试验中事件A恰好发生的次数,需要弄清公式中n,p,k的意义,才能正确运用公式.


求独立重复试验的概率:

(1)在n次独立重复试验中,“在相同条件下”等价于各次试验的结果不会受其他试验的影响,即2,…,n)是第i次试验的结果.
(2)独立重复试验是相互独立事件的特例,只要有“恰好”“恰有”字样的用独立重复试验的概率公式计算更简单,要弄清n,p,k的意义。


数学期望的定义:

为ξ的数学期望或平均数,均值,数学期望又简称为期望,它反映了随机变量取值的平均水平。

方差的定义:

为ξ的均方差,简称为方差,叫做随机变量ξ的标准差,记作:


期望与方差的性质:

(1)
(2)若η=aξ+b,则
(3)若,则
(4)若ξ服从几何分布,则


求均值(数学期望)的一般步骤:

(1)首先判断随机变量是否服从二点分布、二项分布或超几何分布,若服从,则直接用公式求均值.(2)若不服从特殊的分布,则先求出随机变量的分布列,再利用公式求均值。

方差的求法:

(1)若随机变量X服从二点分布或二项分布,则直接利用方差公式可求.
(2)若随机变量X不服从特殊的分布时,求法为:


发现相似题
与“一位射击选手以往1000发子弹的射击结果统计如下表:环数10987...”考查相似的试题有: