本试题 “计算.(1)(2)(3)(x+3)3+125=0(求x的值)” 主要考查您对二次根式的乘除
二次根式的加减
立方根
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
开立方:求一个数a的立方根的运算叫做开立方,其中a叫做被开方数。
立方根性质:
①正数的立方根是正数;负数的立方根是负数;0的立方根是0。
②一般地,如果一个数X的立方等于 a,那么这个数X就叫做a的立方根(也叫做三次方根)。
也就是说,如果x3=a,那么x叫做a的立方根。
如2是8的立方根,-3分之2是-27分之8的立方根,0是0的立方根。
③立方和开立方运算,互为逆运算。
④互为相反数的两个数的立方根也是互为相反数。
⑤负数不能开平方,但能开立方。
⑥任何数(正数、负数、或零)的立方根如果存在的话,必定只有一个。
⑦当两个数相等时,这两个数的平方根相等,反之亦然。
笔算开立方的方法:
方法一
1.将被开立方数的整数部分从个位起向左每三位分为一组;
2.根据最左边一组,求得立方根的最高位数;
3.用第一组数减去立方根最高位数的立方,在其右边写上第二组数;
4.用求得的最高位数的平方的300倍试除上述余数,得出试商;并把求得的最高位数的平方的300倍与试商的积、求得的最高位数的30倍与试商的平方的积和试商的立方写在竖式左边,观察其和是否大于余数,若大于,就减小试商再试,若不大于,试商就是立方根的第二位数;
5.用同样方法继续进行下去。
方法二
第1、2步同上。
第三步,商完后,落下余数和后面紧跟着的三位,如果后面没有就把余数后面添上三个0;
第四步,将要试商的数代入式子“已商数×要试商数×(10×已商数+要试商数)×30+要商数的立方”,最接近但不超过第三步得到的数者,即为这一位要商的数。
然后重复第3、4步,直到除尽。
与“计算.(1)(2)(3)(x+3)3+125=0(求x的值)”考查相似的试题有: