返回

初中一年级数学

首页
  • 解答题
    一粒米,许多同学都认为微不足道,平时总会在饭桌上毫不经意地掉下几粒,甚至有些挑食的同学会把整块馒头或整碗米饭倒掉.针对这种浪费粮食现象,老师组织同学们进行了实际测算,称得500粒大米约重11.07克.现在请你来计算(可用计算器):
    (1)一粒大米重约多少克?(结果保留两个有效数字)
    (2)按我国现有人口13亿,每年365天,每人每天三餐计算,若每人每餐节约一粒大米,一年大约能节约大米多少千克?
    (3)假若我们把一年节约的大米卖成钱,按2.5元?千克计算,可卖得人民币多少元? (4)对于因贫困而失学的儿童,学费按每人每年500元计算,卖得的钱可供多少名失学儿童上一年学?
    本题信息:2011年期中题数学解答题难度较难 来源:尹占江
  • 本题答案
    查看答案
本试题 “一粒米,许多同学都认为微不足道,平时总会在饭桌上毫不经意地掉下几粒,甚至有些挑食的同学会把整块馒头或整碗米饭倒掉.针对这种浪费粮食现象,老师组织同...” 主要考查您对

有理数乘法

有理数除法

科学记数法和有效数字

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 有理数乘法
  • 有理数除法
  • 科学记数法和有效数字
有理数乘法定义:
求两个有理数因数的积的运算叫做有理数的乘法。
有理数乘法的法则:
(1)同号两数相乘,取正号,并把绝对值相乘;
(2)异号两数相乘,取负号,并把绝对值相乘;
(3)任何数与0相乘都得0。
几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

有理数乘法的运算律:
(1)交换律:ab=ba;
(2)结合律:(ab)c=a(bc);
(3)分配律:a(b+c)=ab+ac。
记住乘法符号法则:
1.几个不为0的数相乘,积的符号由负因数的个数决定,当负因数的个数是奇数时,积的符号为负;相反,当负因数的个数是偶数时,积的符号为正。
2.几个数相乘,只要有一个数为0,积就是0。

乘法法则的推广:
1.几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;
2.几个数相乘,有一个因数为零,积就为零;
3.几个不等于零的数相乘,首先确定积的符号,然后把绝对值相乘。

有理数乘法的注意:
1.乘法是指求几个相同加数的和的简便算法,引入负数后,乘法的意义没有改变;
2.有理数乘法与有理数加法的运算步骤一样:确定符号、确定绝对值;
3.掌握乘法法则的关键是会确定积的符号:“两数相乘,同号得正,异号得负”,切勿与有理数加法的符号法则混淆。
有理数除法定义:
已知两个因数的积与其中一个因数,求另一个因数的运算叫做有理数的除法。

有理数的除法法则:
(1)除以一个数,等于乘上这个数的倒数;
(2)两个数相除,同号得正,异号得负,并把绝对值相除;
(3)0除以任何一个不等于0的数都等于0。


有理数除法注意:
①0不能做除数;
②有理数的除法和乘法是互逆运算;
③在做除法运算时,根据同号得正,异号的负的法则先确定符号,在把绝对值相除,若在算式中有带分数,一般化成假分数进行计算,若不能整除,则除法运算都转化为乘法运算。
定义
把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),这种计数法叫做科学记数法。
有效数字:
从一个数的左边非0数字其,到末尾数字止,所有数字都是这个数的有效数字。
科学记数法的特点:
(1)简单:对于数目很大的数用科学记数法的形式表示起来又科学、又简单。
(2)科学记数法的形式是由两个数的乘积组成的,其中一个因数为a(1≤a<10,a∈N*),另一个因数为10n(n是比原来数A的整数部分少1的正整数)。
(3)用科学记数法表示数时,不改变数的符号,只是改变数的书写形式而已。

速写法:
对于10的指数大于0的情形,数出“除了第一位以外的数位”的个数,即代表0的个数。
如1800000000000,除最高位1外尚有12位,故科学记数法写作1.8×1012或1.8E12
10的指数小于0的情形,数出“非有效零的总数(第一个非零数字前的所有零的总数)”
如0.00934593,第一位非零数字(有效数字)9前面有3个零,科学记数法写作9.34593×10-3或9.34593E-3。即第一位非零数字前的0的个数为n,就为10-n(n≥0)

科学计数法的基本运算:
数字很大的数,一般我们用科学记数法表示,
例如6230000000000,我们可以用6.23×1012表示,
而它含义从直面上看是将数字6.23中6后面的小数点向右移去12位。
若将6.23×1012写成6.23E12
即代表将数字6.23中6后面的 小数点向右移去12位,在记数中如
1. 3×104+4×104=7×104可以写成3E4+4E4=7E4
即 aEc+bEc=(a+b)Ec
2. 4×104-7×104=-3×104可以写成4E4-7E4=-3E4
即 aEc-bEc=(a-b)Ec
3. 3000000×600000=1800000000000
3e6×6e5=1.8e12
即 aEM×bEN=abE(M+N)
4. -60000÷3000=-20
-6E4÷3E3=-2E1
即 aEM÷bEN=a/bE(M-N)
5.有关的一些推导
(aEc)2=(aEc)(aEc)=a2E2c
(aEc)3=(aEc)(aEc)(aEc)=a3E3c
(aEc)n=anEnc
a×10lgb=ab
aElgb=ab