本试题 “在△ABC,∠C=90°,斜边AB=10,直角边AC、BC的长是关于x的方程x2-mx+3m+6=0的两个实数根.(1)求m的值;(2)计算sinA+sinB+sinA•sinB.” 主要考查您对一元二次方程根与系数的关系
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
一元二次方程根与系数关系的推论:
1.如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=-p , x1`x2=q
2.以两个数x1、x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0
提示:
①运用根与系数的关系和运用根的判别式一样,都必须先把方程化为一般形式,以便正确确定a、b、c的值。
②有推论1可知,对于二次项系数为1的一元二次方程,他的两根之和等于一次项系数的相反数,两根之积等于常数项。
③推论2可以看作推论1的逆定理,利用推论2可以直接求出以两个数x1、x2为根的一元二次方程(二次项系数是1)是x2-(x1+x2)x+x1x2=0
与“在△ABC,∠C=90°,斜边AB=10,直角边AC、BC的长是关于x的方程x...”考查相似的试题有: