返回

初中三年级数学

首页
  • 解答题
    已知圆锥的侧面积为12π.
    (1)求圆锥的母线l关于底面半径r的函数关系式,并求出r的取值范围;
    (2)当圆锥的全面积为16π时, 求圆锥的侧面展开图的圆心角度数.
    本题信息:2006年月考题数学解答题难度较难 来源:周梅
  • 本题答案
    查看答案
本试题 “已知圆锥的侧面积为12π.(1)求圆锥的母线l关于底面半径r的函数关系式,并求出r的取值范围;(2)当圆锥的全面积为16π时, 求圆锥的侧面展开图的圆心角度数.” 主要考查您对

求反比例函数的解析式及反比例函数的应用

圆锥的计算

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 求反比例函数的解析式及反比例函数的应用
  • 圆锥的计算

反比例函数解析式的确定方法:
由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

反比例函数的应用:
建立函数模型,解决实际问题。



用待定系数法求反比例函数关系式的一般步骤是:
①设所求的反比例函数为:y= (k≠0);
②根据已知条件(自变量与函数的对应值)列出含k的方程;
③由代人法解待定系数k的值;
④把k值代人函数关系式y= 中。

反比例函数应用一般步骤:
①审题;
②求出反比例函数的关系式;
③求出问题的答案,作答。

圆锥:
以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的东西叫做圆锥体。该直角边叫圆锥的轴。

圆锥的组成构件:

①圆锥的高:圆锥的顶点到圆锥的底面圆心之间的距离叫做圆锥的高;
②圆锥的母线:圆锥的侧面展开形成的扇形的半径、底面圆周上点到顶点的距离。
③圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长。
圆锥的侧面积就是弧长为圆锥底面的周长×母线/2;没展开时是一个曲面。
④圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且底面展开图为一圆形侧面展开图是扇形。
⑤圆锥侧面展开是一个扇形,已知扇形面积为二分之一rl。所以圆锥侧面积为二分之一母线长×弧长(即底面周长)。
另外,母线长等于底面圆直径的圆锥,展开的扇形就是半圆。
所有圆锥展开的扇形角度等于(底面直径÷母线)×180度。


圆锥的计算:
设圆锥底面圆的半径为r,母线长为l,n为圆心角度数
则圆锥的侧面积:
圆锥的全面积:S=S+S=
圆锥的体积:V=Sh=·πr2h
底面周长(C)=2πr=(nπl)/
h=根号(l2-r2


发现相似题
与“已知圆锥的侧面积为12π.(1)求圆锥的母线l关于底面半径r的函...”考查相似的试题有: