返回

小学六年级数学

首页
  • 判断题
    判断。(对的打“√”,错的打“×”)
    1.贝贝比丽丽多a个苹果,当贝贝给丽丽a个后,两人就一样多。
    [     ]

    2.方程x+=没有解。
    [     ]

    3.比的前项和后项都乘上或除以相同的数,比值不变。
    [     ]

    4.比例尺一定,图上距离和实际距离成正比例。
    [     ]

    5.给一间房子的地面铺上正方形地砖,需用的块数和地砖的边长成反比例。
    [     ]

    6.当a=3时,a3=3a。
    [     ]

    7.用a元钱买了1千克苹果,苹果的单价是元。
    [     ]

    8.用小木棒照下图搭正方形,搭一个用4根,搭两个用7根,搭a个用4a根。

    [    ]

    本题信息:2012年专项题数学判断题难度较难 来源:张思媛
  • 本题答案
    查看答案
本试题 “判断。(对的打“√”,错的打“×”)1.贝贝比丽丽多a个苹果,当贝贝给丽丽a个后,两人就一样多。[ ]2.方程x+=没有解。[ ]3.比的前项和后项都乘上或除以相同的...” 主要考查您对

找规律

用字母表示数

解方程

比的应用

正比例的意义,反比例的意义

比例尺

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 找规律
  • 用字母表示数
  • 解方程
  • 比的应用
  • 正比例的意义,反比例的意义
  • 比例尺
学习目标:
1、通过观察、实验、猜测、推理等活动发现图形的排列规律。
2、培养初步的观察、推理能力。
知识点拨:
在日常生活中,我们经常会碰到许多按一定顺序排列的数(或图形)。只要我们从不同的角度去分析研究,善于观察、分析、总结,就能发现规律,找到解决问题的方法。
找规律填数关键是根据已知的数找出数与数之间的规律。看相邻两数的倍数关系、差是常用的观察方法。
寻找数列的规律,通常从两个方面来考虑:
(1)寻找各项与项数间的关系;
(2)考虑相邻项之间的关系,然后,再总结出一般的规律。
用字母表示数:
含有字母的式子不仅可以表示数量关系,也可以表示数量。还可以简明、概括地表达运算定律和计算公式,方便研究和解决实际问题。
①含有字母的式子中,数字和字母、字母和字母相乘时,乘号可以记作“·”,也可以省略不写。
②在省略乘号的时候,应当把数字写在字母的前面。
③当“1”和任何字母相乘时,“1”可以省略不写。
④由于字母可以表示任何数,在一些式中,对字母表示数的要运行说明,如: (a≠0)。
⑤因为字母表示的是数,所以在式子中每一个字母都不注明单位名称,计算结果也不注明单位名称,只在答句中写上单位名称。

用字母表示数的意义:

有助于揭示概念的本质特征,能使数量之间的关系更加简明,更具有普遍意义。使思维过程简约化,易于形成概念系统。
解方程:
使方程左右两边相等的未知数的值叫做方程的解。
求方程的解的过程叫做解方程。
方程的解是一个值,解方程是求方程的解的演算过程。
检验方法:
求出未知数的值分别代入原方程的两边计算(即含有字母的式子的值),如果原方程等号左右两边相等,则所求得的未知数的值是原方程的解。
解方程依据
方程依靠等式各部分的关系,和加减乘除各部分的关系:
加数+加数=和,和-其中一个加数=另一个加数,差+减数=被减数,
被减数-减数=差,被减数-差=减数,
因数×因数=积,积÷一个因数=另一个因数,
被除数÷除数=商,被除数÷商=除数,商×除数=被除数。
比的应用:
根据各部分的比,确定各部分与总量之间的关系,即各部分占总量的几分之几,然后按照“求一个数(这里指分配的量)的几分之几是多少”的问题解答。
一般单位要统一,注意比的前后要一致,就是等号两边都是图上距离与实际距离的比,或者是反过来,再就是注意大的比大的,等于小的比小的。

正比例:
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系,正比例的图像是一条直线;
用字母表示为如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用以下关系式表示:=k(一定);
正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变.正比例和反比例

反比例:
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系;
如果用字母x和y表示两种相关联的量,用k表示它们的积,反比例关系可以用下面关系式表示:xy=k(一定)。


反比例的意义:
成反比例的量包括三个数量,一个定量和两个变量。研究两个变量之间的扩大(或缩小)的变化关系。一种量发生变化,引起另一种量发生相反的变化。这两种量是反比例的量,它们的关系成反比例关系。
成反比例的量:
前提:两种相关的量(乘法关系)
要求:一个量变化,另一个量也随着变化,并且,这两个量中相对应的两个数的乘积一定。
结论:这两个量就叫做反比例的量,它们的关系叫做反比例关系。

正比例和反比例关系:
相同点:
①正比例和反比例都含有三个数量,在这三个数量中,均有一个定量、两个变量。
②在正、反比例的两个变量中,均是一个量变化,另一个量也随之变化。并且变化方式均属于扩大(乘以一个数)或缩小(除以一个数)若干倍的变化。
不同点:
①正比例的定量是两个变量中相对应的两个数的比值。反比例的定量是两个变量中相对应的两个数的积。
②正比例的图像时上升直线;反比例是曲线。
③公式不同:正比例是(=k(一定)),反比例是(xy=k(一定))。
④规律不同:正比例是一个数缩小,另一个数也缩小,一个数扩大,另一个数也扩大;反比例是一个数缩小,另一个数就扩大,一个数扩大另一个数就缩小。 


判断两种量成正比例、反比例或不成比例的方法:
(1)找出两种相关联的量。
(2)根据两种相关联的量之间的关系列出数量关系式。
(3)如果两种量中相对应的两个数的比值(也就是商)一定,就是成正比例的量;若积一定,就是反比例的量。
比例尺:
表示图上距离比实地距离缩小的程度,因此也叫缩尺。图上距离和实际距离的比,叫做这幅图的比例尺。
即:图上距离:实际距离=比例尺; =比例尺

比例尺分类:
比例尺一般分为数值比例尺和线段比例尺:
(1)数值比例尺:例如一幅图的比例尺是1:20000或。为了方便,通常把比例尺写成前项(或后项)是1的比。
(2)线段比例尺是在图上附上一条标有数量的线段,用来表示实际相对应的距离。

比例尺表示方法
用公式表示为:比例尺=。比例尺通常有三种表示方法。
①数字式,用数字的比例式或分数式表示比例尺的大小。例如地图上1厘米代表实地距离500千米,可写成:1∶50,000,000或写成:1/50,000,000。
②线段式,在地图上画一条线段,并注明地图上1厘米所代表的实际距离。
③文字式,在地图上用文字直接写出地图上1厘米代表实地距离多少千米,如:图上1厘米相当于地面距离500千米,或五千万分之一。
三种表示方法可以互换。必须化单位。
在绘制地图和其他平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。
这时,就要确定图上距离和相对应的实际距离的比。


比例尺公式:
图上距离=实际距离×比例尺 
实际距离=图上距离÷比例尺 
比例尺=图上距离÷实际距离

单位换算:
在比例尺计算中要注意单位间的换算:1公里=1千米=1×1000米=1×100000厘米
图上用厘米,实地用千米,厘米换千米,去五个零;
千米换厘米,在千的基础上再加两个零。

计算方法:
①如果将原比例尺放大到n倍;那么原比例×n。
②如果将原比例尺放大n倍;那么原比例×(n+1)。
③如果将原比例尺缩小到1/n;那么原比例×1/n。
④如果将原比例尺缩小1/n;那么原比例×(1-1/n)。
⑤比例尺缩放后,原面积之比会变为缩放倍数的平方。