返回

高中数学

首页
  • 解答题
    设f(x)是定义在R上的函数,对任意x,y∈R有f(x+y)=f(x)+f(y)-1,当x>0时,f(x)>1,且f(3)=4;
    (1)求f(1),f(4)的值;
    (2)判断并证明f(x)的单调性;
    (3)若关于x的不等式f(|x|x+a2x+a)<f(f(4)•x)的解集中最大的整数为2,求实数a的取值范围.
    本题信息:数学解答题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “设f(x)是定义在R上的函数,对任意x,y∈R有f(x+y)=f(x)+f(y)-1,当x>0时,f(x)>1,且f(3)=4;(1)求f(1),f(4)的值;(2)判断并证明f(x...” 主要考查您对

分段函数与抽象函数

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 分段函数与抽象函数

分段函数:

1、分段函数:定义域中各段的x与y的对应法则不同,函数式是分两段或几段给出的;
分段函数是一个函数,定义域、值域都是各段的并集。 

抽象函数

我们把没有给出具体解析式的函数称为抽象函数;
一般形式为y=f(x),或许还附有定义域、值域等,如:y=f(x),(x>0,y>0)。


知识点拨:

1、绝对值函数去掉绝对符号后就是分段函数。
2、分段函数中的问题一般是求解析式、反函数、值域或最值,讨论奇偶性单调性等。
3、分段函数的处理方法:分段函数分段研究。