学习目标:
1、通过观察、实验、猜测、推理等活动发现图形的排列规律。
2、培养初步的观察、推理能力。
知识点拨:
在日常生活中,我们经常会碰到许多按一定顺序排列的数(或图形)。只要我们从不同的角度去分析研究,善于观察、分析、总结,就能发现规律,找到解决问题的方法。
找规律填数关键是根据已知的数找出数与数之间的规律。看相邻两数的倍数关系、差是常用的观察方法。
寻找数列的规律,通常从两个方面来考虑:
(1)寻找各项与项数间的关系;
(2)考虑相邻项之间的关系,然后,再总结出一般的规律。
有序数对:
这种有顺序的两个数a和b组成的数对叫做有序数对。记作(a,b) 数对是一个表示位置的概念。前一个数字表示列,后一个数字表示行。
比如,(2,5),表示它的位置是第二列第五行。
例题解析:
下图是我校平面示意图,若科技楼所在的位置为(3,6),则食堂所在的位置为(1,4),宿舍楼所在的位置为(2,8),实验楼所在的位置为(3,2),东教学楼所在的位置为(5,2),西教学楼所在的位置为(5,6),办公楼所在的位置为(9,2),大门所在的位置为(7,1)。
加、减、乘、除四种运算统称四则运算。
加法的意义:把两个(或几个)数合并成一个数的运算叫做加法。
减法的意义:已知两个加数的和与其中的一个加数求另一个加数的运算叫做减法。减法中,已知的两个加数的和叫做被减数,其中一个加数叫做减数,求出的另一个加数叫差。
乘法的意义:一个数乘以整数,是求几个相同加数的和的简便运算,或是求这个数的几倍是多少。
除法的意义:已知两个因数的积与其中一个因数求另一个因数的运算叫做除法。在除法中,已知的两个因数的积叫做被除数,其中一个因数叫做除数,求出的另一个因数叫商。
四则运算分为二级,加减法叫做第一级运算,乘除法叫做第二级运算。
方法点拨:
运算的顺序:在一个没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先算第二级运算,再算第一级运算。在有括号的算式里,要先算括号里的,再算括号外的。
列方程解决问题:
未知数用字母表示,参加列式。根据题意找出数量间的相等关系,列出含有未知数的等式,也就是方程。
它的优势体现在可以使未知数直接参加运算。
列方程解决问题一般步骤:
①审题,弄清题意:即全面分析已知数与已知数、已知数与未知数的关系。特别要把牵涉到的一些概念术语弄清,如同向,相向,增加到,增加了等。
②引进未知数:用x表示所求的数量或有关的未知量。在小学阶段所遇到的应用题并不十分复杂,一般只需要直接把要求的数量设为未知数。
③找出应用题中数量间的相等关系,列出方程。
④解方程,找出未知数的值。
⑤检验并写出答案:检验时,
一是要将所求得的未知数的值代太原方程,检验方程的解是否正确;
二是检查所求得的未知数的值是否符合题意,不符合题意的要舍去,保留符合题意的解。
平行四边形面积:
平行四边形面积=底×高,用字母表示:S=a×h。