返回

高中二年级数学

首页
  • 填空题
    在平面上,若两个正三角形的边长的比为,则它们的面积比为1:2,类似地,在空间,若两个正四面体的棱长比为1:2,则它们的体积的比为(    )
    本题信息:2012年江苏期中题数学填空题难度一般 来源:沈诺(高中数学)
  • 本题答案
    查看答案
本试题 “在平面上,若两个正三角形的边长的比为,则它们的面积比为1:2,类似地,在空间,若两个正四面体的棱长比为1:2,则它们的体积的比为( )” 主要考查您对

柱体、椎体、台体的表面积与体积

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 柱体、椎体、台体的表面积与体积

侧面积和全面积的定义:

(1)侧面积的定义:把柱、锥、台的侧面沿着它们的一条侧棱或母线剪开,所得到的展开图的面积,就是空间几何体的侧面积.
(2)全面积的定义:空间几何体的侧面积与底面积的和叫做空间几何体的全面积, 

柱体、锥体、台体的表面积公式(c为底面周长,h为高,h′为斜高,l为母线)

柱体、锥体、台体的体积公式:




多面体的侧面积与体积:

多面体 图像 侧面积 体积
棱柱
直棱柱的侧面展开图是矩形
棱锥
正棱柱的侧面展开图是一些全等的等腰三角形,
棱台
正棱台的侧面展开图是一些全等的等腰梯形,
  

旋转体的侧面积和体积:

旋转体 图形 侧面积与全面积 体积
圆柱
圆柱的侧面展开图的矩形:
圆锥
圆锥的侧面展开图是扇形:
圆台
圆台的侧面展开图是扇环:

发现相似题
与“在平面上,若两个正三角形的边长的比为,则它们的面积比为1:...”考查相似的试题有: