返回

高中一年级物理

首页
  • 计算题
    如图所示,水平传送带AB长L(足够长),以v0的速度向右匀速运动(传送带的传送速度恒定),质量为m的小木块无初速度放在传送带的最左端A点,小木块经过t1后与传送带速度大小相等。求:
    (1)小木块与传送带间的动摩擦因数μ是多大?
    (2)小木块在传送带上从A点运动到B点的时间T是多少?

    本题信息:2011年北京期末题物理计算题难度较难 来源:宗萍
  • 本题答案
    查看答案
本试题 “如图所示,水平传送带AB长L(足够长),以v0的速度向右匀速运动(传送带的传送速度恒定),质量为m的小木块无初速度放在传送带的最左端A点,小木块经过t1后与...” 主要考查您对

匀速直线运动

从运动情况确定受力

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 匀速直线运动
  • 从运动情况确定受力

定义:
在任意相等的时间内位移相等的直线运动叫做匀速直线运动。

特点:
加速度a=0,速度v=恒量。

位移公式:
S=vt。


知识点拨:

  1. 匀变速直线运动是在相等时间内速度变化相等的直线运动。注意在此定义中所涉及的“相等时间内”应理解为任意相等的时间内,而非一些特定相等的时间内。
  2. 做匀速直线运动的物体在任意相同时间内通过的路程都相等,即路程与时间成正比;速度大小不随路程和时间变化;位移与路程的大小相等。
  3. 匀速直线运动是理想状态与实际的结合。匀速直线运动不常见,因为物体做匀速直线运动的条件是不受外力或者所受的外力和为零,但是我们可以把一些运动近似地看成是匀速直线运动。如:滑冰运动员停止用力后的一段滑行、站在商场自动扶梯上的顾客的运动等等。我们可用公式v=s/t求得他们的运动速度。式中,s为位移,v为速度且为恒矢量,t为发生位移s所用的时间。由公式可以看出,位移是时间的正比例函数:位移与时间成正比。
  4. 当物体处于匀速直线运动时,物体受力平衡。
  5. 做匀速直线运动的物体其速度是保持不变的,因此,如果知道了某一时刻(或某一距离)的运动速度,就知道了它在任意时间段内或任意运动点上的速度。

                             


从运动情况确定受力:

1、知道物体的运动情况,应用运动学公式求出物体的加速度,再应用牛顿第二定律,推断或者求出物体的受力情况。
2、分析这类问题的关键是抓住受力情况和运动情况的桥梁——加速度。
3、求解动力学这两类问题的思路,可由下面的框图来表示。


瞬时加速度问题的解决方法:

分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。此类问题应注意以下两种基本模型。
(1)刚性绳(或接触面):可认为是一种不发生明显形变就能产生弹力的物体。若剪断(或脱离)后,其弹力立即消失,不需要考虑形变恢复时间。一般题目中所给的细绳(线)和接触面,在不加特殊说明时,均可按此模型处理。解决此模型的关键在于分析情景突变后的过程,利用过程的初状态分析求解状态突变后的瞬时加速度。
(2)弹簧(或橡皮绳):此类物体的特点是形变量大,形变恢复需要较长时间。在瞬时问题中,其弹力的大小往往可以看成不变。但当弹簧的一端不与有质量的物体连接时,轻弹簧的形变不需要时间,弹力可以突变。解决此类问题时需利用情景突变前的受力来确定情景突变后瞬间的受力及加速度。

动力学范围的整体法与隔离法:

处理连接体问题的方法有整体法和隔离法。
1.整体法将一组连接体作为一个整体看待,牛顿第二定律中是整体受的合外力,只分析整体所受的外力即可(因为连接体的相互作用力是内力,可不分析),简化了受力分析。在研究连接体时,连接体各部分的运动状态可以相同,也可以不同。当连接体各部分运动状态不同时,整体的合外力等于各部分质量与各部分加速度乘积的矢量和,即F写成分量形式有:

如果待求的问题不涉及系统内部的相互作用时,就可以采用整体法。
2.隔离法在求解连接体的相互作用力时采用,将某个部分从连接体中分离出来,其他部分对它的作用力就成了外力。
整体法与隔离法在研究连接体问题时经常交替使用。


发现相似题
与“如图所示,水平传送带AB长L(足够长),以v0的速度向右匀速运...”考查相似的试题有: