返回

高中数学

首页
  • 单选题
    已知函数f(x)=tan(2x-bπ)的图象的一个对称中心为(,0),若|b|<,则f(x)的解析式为(  )
    A.tan(2x+ B.tan(2x-
    C.tan(2x+)或tan(2x- D.tan(2x-)或tan(2x+

    本题信息:数学单选题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “已知函数f(x)=tan(2x-bπ)的图象的一个对称中心为(,0),若|b|<,则f(x)的解析式为( ) A.tan(2x+) B.tan(2x-) C.tan(2x+)或tan(2x-) D...” 主要考查您对

正切、余切函数的图象与性质(定义域、值域、单调性、奇偶性等)

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 正切、余切函数的图象与性质(定义域、值域、单调性、奇偶性等)

正切函数的图像:

余切函数的图像:



正切函数的性质:

(1)定义域:
(2)值域是R,在上面定义域上无最大值也无最小值;
(3)周期性:是周期函数且周期是π,它与直线y=a的两个相邻交点之间的距离是一个周期π;
(4)奇偶性:是奇函数,对称中心是(k∈Z),无对称轴;
(5)单调性:正切函数在开区间内都是增函数。但要注意在整个定义域上不具有单调性。

余切函数的性质:

(1)定义域:{x|x≠kπ,k∈Z}
(2)值域:实数集R;
(3)周期性:是周期函数,周期为kπ(k∈Z且k≠0),最小正周期T=π
(4)奇偶性:奇函数,图像关于(,0)(k∈z)对称,实际上所有的零点都是它的对称中心
(5)单调性:在每一个开区间(kπ,(k+1)π),(k∈Z)上都是减函数,在整个定义域上不具有单调性