本试题 “若f(x)=tan(x+),则( ) A.f(-1)>f(0)>f(1) B.f(0)>f(1)>f(-1) C.f(1)>f(0)>f(-1) D.f(0)>f(-1)>f(1)” 主要考查您对正切、余切函数的图象与性质(定义域、值域、单调性、奇偶性等)
等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
正切函数的图像:
余切函数的图像:
正切函数的性质:
(1)定义域:;
(2)值域是R,在上面定义域上无最大值也无最小值;
(3)周期性:是周期函数且周期是π,它与直线y=a的两个相邻交点之间的距离是一个周期π;
(4)奇偶性:是奇函数,对称中心是(k∈Z),无对称轴;
(5)单调性:正切函数在开区间内都是增函数。但要注意在整个定义域上不具有单调性。
余切函数的性质:
(1)定义域:{x|x≠kπ,k∈Z}
(2)值域:实数集R;
(3)周期性:是周期函数,周期为kπ(k∈Z且k≠0),最小正周期T=π
(4)奇偶性:奇函数,图像关于(,0)(k∈z)对称,实际上所有的零点都是它的对称中心
(5)单调性:在每一个开区间(kπ,(k+1)π),(k∈Z)上都是减函数,在整个定义域上不具有单调性
与“若f(x)=tan(x+),则( ) A.f(-1)>f(0)>f(1) B.f...”考查相似的试题有: