返回

初中数学

首页
  • 解答题
    为了解我校初中三年级300名男生的身体发育情况,从中抽测了部分男生的身高进行分析,请根据下面给出的频率分布表中提供的信息,解答下列问题:
     分组(cm)  频数 频率 
     156.5~161.5  2  a
     161.5~166.5  3  0.15
     166.5~171.5  b  0.20
     171.5~176.5  c  0.30
     176.5~181.5  5  d
    (1)这次共抽查了______名男生;
    (2)表中a=______,b=______,c=______,d=______;
    (3)估计极差为______;
    (4)该校初中三年级男生身高在171.5~176.5(cm)范围内的人数为______;
    (5)估计这个样本的男生的平均身高.
    本题信息:数学解答题难度较难 来源:未知
  • 本题答案
    查看答案
本试题 “为了解我校初中三年级300名男生的身体发育情况,从中抽测了部分男生的身高进行分析,请根据下面给出的频率分布表中提供的信息,解答下列问题: 分组(cm) 频...” 主要考查您对

极差

频数与频率

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 极差
  • 频数与频率

极差:
全距,又称极差,是用来表示统计资料中的变异量数,其最大值与最小值之间的差距;
即最大值减最小值后所得之数据。
极差是指总体各单位的标志值中,最大标志值与最小标志值之差。它是标志值变动的最大范围。极差也称为全距或范围误差,它是测定标志变动的最简单的指标。换句话说,也就是指一组数据中的最大数据与最小数据的差叫做这组数据的极差。 极差英文为range ,简写为R,表示为:R=Xmax-Xmin。移动极差(Moving Range)是其中的一种。


极差特点:
刻画数据离散程度的最简单的统计量;
计算简单;
不能反映中间数据的分散状况。

移动极差:
是指两个或多个连续样本值中最大值与最小值之差,这种差是按这样方式计算的:
每当得到一个额外的数据点时,就在样本中加上这个新的点,同时删除其中时间上“最老的”点,然后计算与这点有关的极差,因此每个极差的计算至少与前一个极差的计算共用一个点的值。一般说来,移动极差用于单值控制图,并且通常用两点(连续的点)来计算移动极差。

计算公式:
极差=最大值-最小值。
全距=最大标志值—最小标志值
R=Xmax-Xmin
(其中,Xmax为最大值,Xmin为最小值)
例如 :12 12 13 14 16 21
这组数的极差就是 :21-12=9
例如,“早穿皮袄午穿纱”,这句话说明的气温特征数就是极差。
方差计算公式:s2=(1/n)×[(x1-x0)2 + (x2-x0)2 +...+ (xn-x0)2](x0即为x的平均值)

极差用途:
在统计中常用极差来刻画一组数据的离散程度,以及反映的是变量分布的变异范围和离散幅度,在总体中任何两个单位的标准值之差都不能超过极差。同时,它能体现一组数据波动的范围。极差越大,离散程度越大,反之,离散程度越小。
极差只指明了测定值的最大离散范围,而未能利用全部测量值的信息,不能细致地反映测量值彼此相符合的程度,极差是总体标准偏差的有偏估计值,当乘以校正系数之后,可以作为总体标准偏差的无偏估计值,它的优点是计算简单,含义直观,运用方便,故在数据统计处理中仍有着相当广泛的应用。 但是,它仅仅取决于两个极端值的水平,不能反映其间的变量分布情况,同时易受极端值的影响。 


频数:一般我们称落在不同小组中的数据个数为该组的频数。
频率:频数与数据总数的比值为频率。频率反映了各组频数的大小在总数中所占的分量。

频数
在一组依大小顺序排列的测量值中,当按一定的组距将其分组时出现在各组内的测量值的数目。
如有一组测量数据,数据的总个数N=148最小的测量值xmin=0.03,最大的测量值xmax=31.67,按组距为△x=3.000将148个数据分为11组,其中分布在15.05~18.05范围内的数据有26个,则称该数据组的频数为26。

频率
如在314159265358979324中,‘9’出现的频数是3,出现的频率是3/18=16.7%
频数也称“次数”,对总数据按某种标准进行分组,统计出各个组内含个体的个数。而频率则每个小组的频数与数据总数的比值。
在变量分配数列中,频数(频率)表明对应组标志值的作用程度。
频数(频率)数值越大表明该组标志值对于总体水平所起的作用也越大,反之,频数(频率)数值越小,表明该组标志值对于总体水平所起的作用越小。