返回

初中数学

首页
  • 单选题

    下列命题中的真命题是(  )

    A.一条对角线平分一组对角的四边形是菱形

    B.四个角都相等的四边形是正方形

    C.有一个角是直角的平行四边形是矩形

    D.一组对边平行,另一组对边相等的四边形是平行四边形
    本题信息:数学单选题难度容易 来源:未知
  • 本题答案
    查看答案
本试题 “下列命题中的真命题是( ) A.一条对角线平分一组对角的四边形是菱形 B.四个角都相等的四边形是正方形 C.有一个角是直角的平行四边形是矩形 D.一组对边平...” 主要考查您对

平行四边形的判定

矩形,矩形的性质,矩形的判定

菱形,菱形的性质,菱形的判定

正方形,正方形的性质,正方形的判定

命题,定理

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 平行四边形的判定
  • 矩形,矩形的性质,矩形的判定
  • 菱形,菱形的性质,菱形的判定
  • 正方形,正方形的性质,正方形的判定
  • 命题,定理
平行四边形的判定:
(1)定义:两组对边分别平行的四边形是平行四边形;
(2)定理1:两组对角分别相等的四边形是平行四边形;
(3)定理2:两组对边分别相等的四边形是平行四边形;
(4)定理3:对角线互相平分的四边形是平行四边形
(5)定理4:一组对边平行且相等的四边形是平行四边形。
平行四边形的面积:S=底×高。
矩形:
是一种平面图形,矩形的四个角都是直角,同时矩形的对角线相等,而且矩形所在平面内任一点到其两对角线端点的距离的平方和相等。

矩形的性质:
1.矩形的4个内角都是直角;
2.矩形的对角线相等且互相平分;
3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等;
4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它至少有两条对称轴。对称中心是对角线的交点。
5.矩形是特殊的平行四边形,矩形具有平行四边形的所有性质
6.顺次连接矩形各边中点得到的四边形是菱形


矩形的判定
①定义:有一个角是直角的平行四边形是矩形
②定理1:有三个角是直角的四边形是矩形
③定理2:对角线相等的平行四边形是矩形
④对角线互相平分且相等的四边形是矩形
矩形的面积:S矩形=长×宽=ab。
黄金矩形:
宽与长的比是(√5-1)/2(约为0.618)的矩形叫做黄金矩形。
黄金矩形给我们一协调、匀称的美感。世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计。如希腊的巴特农神庙等。
菱形的定义:
在一个平面内,有一组邻边相等的平行四边形是菱形。

菱形的性质:
①菱形具有平行四边形的一切性质;
②菱形的对角线互相垂直且平分,并且每一条对角线平分一组对角;
③菱形的四条边都相等;
④菱形既是轴对称图形(两条对称轴分别是其两条对角线所在的直线),也是中心对称图形(对称中心是其重心,即两对角线的交点);
⑤在有一个角是60°角的菱形中,较短的对角线等于边长,较长的对角线是较短的对角线的根号3倍。


菱形的判定:
在同一平面内,
(1)定义:有一组邻边相等的平行四边形是菱形
(2)定理1:四边都相等的四边形是菱形
(3)定理2:对角线互相垂直的平行四边形是菱形
菱形是在平行四边形的前提下定义的,首先它是平行四边形,而且是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而增加了一些特殊的性质和判定方法。
菱形的面积:S菱形=底边长×高=两条对角线乘积的一半。


正方形的定义:
有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
特殊的长方形。
四条边都相等且四个角都是直角的四边形叫做正方形。
有一组邻边相等的矩形是正方形。
有一个角为直角的菱形是正方形。
对角线平分且相等,并且对角线互相垂直的四边形为正方形。
对角线相等的菱形是正方形。

正方形的性质:
1、边:两组对边分别平行;四条边都相等;相邻边互相垂直
2、内角:四个角都是90°;
3、对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角;
4、对称性:既是中心对称图形,又是轴对称图形(有四条对称轴);
5、正方形具有平行四边形、菱形、矩形的一切性质;
6、特殊性质:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;
正方形的两条对角线把正方形分成四个全等的等腰直角三角形;
7、在正方形里面画一个最大的圆,该圆的面积约是正方形面积的78.5%;
正方形外接圆面积大约是正方形面积的157%。
8、正方形是特殊的长方形。


正方形的判定:
判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形,再证明它是菱形(或矩形),最后证明它是矩形(或菱形)。
1:对角线相等的菱形是正方形。
2:有一个角为直角的菱形是正方形。
3:对角线互相垂直的矩形是正方形。
4:一组邻边相等的矩形是正方形。
5:一组邻边相等且有一个角是直角的平行四边形是正方形。
6:对角线互相垂直且相等的平行四边形是正方形。
7:对角线相等且互相垂直平分的四边形是正方形。
8:一组邻边相等,有三个角是直角的四边形是正方形。
9:既是菱形又是矩形的四边形是正方形。

有关计算公式:
若S为正方形的面积,C为正方形的周长,a为正方形的边长,则
正方形面积计算公式:S =a×a(即a的2次方或a的平方),或S=对角线×对角线÷2;
正方形周长计算公式: C=4a 。
S正方形=。(正方形边长为a,对角线长为b)


命题的概念:
判断一件事情的语句,叫做命题。
命题的概念包括两层含义:
(1)命题必须是个完整的句子;
(2)这个句子必须对某件事情做出判断。

公理:
人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。

定理:
通过真命题(公理或其他已被证明的定理)出发,经过受逻辑限制的演绎推导,证明为正确的结论的命题或公式,例如“平行四边形的对边相等”就是平面几何中的一个定理。
一般来说,在数学中,只有重要或有趣的陈述才叫定理,证明定理是数学的中心活动。相信为真但未被证明的数学叙述为猜想,当它被证明为真后便是定理。它是定理的来源,但并非唯一来源。一个从其他定理引伸出来的数学叙述,可以不经过证明成为猜想的过程,成为定理。
如上所述,定理需要某些逻辑框架,继而形成一套公理(公理系统)。同时,一个推理的过程,容许从公理中引出新定理和其他之前发现的定理。
在命题逻辑中,所有已证明的叙述都称为定理。

经过长期实践后公认为正确的命题叫做公理,用推理的方法判断为正确的命题叫做定理。

命题的分类:
(按正确、错误与否分)分为真命题(正确的命题),假命题(错误的命题),
所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。

四种命题:
1.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。
2.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题。
3.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题。

相互关系:
1.四种命题的相互关系:原命题与逆命题互逆,否命题与原命题互否,原命题与逆否命题相互逆否,逆命题与否命题相互逆否,逆命题与逆否命题互否,逆否命题与否命题互逆。
2.四种命题的真假关系:
①两个命题互为逆否命题,它们有相同的真假性。
②两个命题为互逆命题或互否命题,它们的真假性没有关系(原命题与逆否命题同真同假,逆命题与否命题同真同假)

定理结构:
定理一般都有一个设定——一大堆条件。然后它有结论——一个在条件下成立的数学叙述。
通常写作「若条件,则结论」。用符号逻辑来写就是条件→结论。而当中的证明不视为定理的成分。
逆定理:
若存在某叙述为A→B,其逆叙述就是B→A。逆叙述成立的情况是A←→B,否则通常都是倒果为因,不合常理。若某叙述是定理,其成立的逆叙述就是逆定理。
若某叙述和其逆叙述都为真,条件必要且充足。 若某叙述为真,其逆叙述为假,条件充足。 若某叙述为假,其逆叙述为真,条件必要。


常用数学定理:
1、每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2、1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3、速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4、单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 、工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 、加数+加数=和
和-一个加数=另一个加数
7 、被减数-减数=差
被减数-差=减数
差+减数=被减数
8 、因数×因数=积
积÷一个因数=另一个因数
9、 被除数÷除数=商
被除数÷商=除数
商×除数=被除数

小学数学图形计算公式:
1 、正方形 C周长 S面积 a边长
周长=边长×4 ;C=4a;
面积=边长×边长; S=a×a
2 、正方体 V:体积 a:棱长
表面积=棱长×棱长×6; S棱=a×a×6 ;
体积=棱长×棱长×棱长; V=a×a×a
3、 长方形 C周长 S面积 a边长
周长=(长+宽)×2 ;C=2(a+b) ;
面积=长×宽 ;S=ab
4 、长方体 V:体积 s:面积 a:长 b: 宽 c:高
表面积(长×宽+长×高+宽×高)×2; S=2(ab+bc+ca);
体积=长×宽×高 ;V=abc
5、 三角形 s面积 a底 h高
面积=底×高÷2 ;s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6、 平行四边形 s面积 a底 h高
面积=底×高 s=ah
7、 梯形 s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2;s=(a+b)× h÷2
8、 圆形 S面积 C周长 ∏ d=直径 r=半径
周长=直径×∏=2×∏×半径; C=∏d=2∏r ;
面积=半径×半径×∏
9、 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长
侧面积=底面周长×高;
表面积=侧面积+底面积×2 ;
体积=底面积×高 ;
体积=侧面积÷2×半径
10、 圆锥体 v:体积 h:高 s:底面积 r:底面半径
体积=底面积×高÷3


发现相似题
与“下列命题中的真命题是( ) A.一条对角线平分一组对角的四边...”考查相似的试题有: