返回

高中三年级数学

首页
  • 单选题
    已知向量a=(3,0),b=(0,1),若ab与2a+b共线,则实数λ的值为

    A.1
    B.-1
    C.
    D.-
    本题信息:2011年福建省模拟题数学单选题难度一般 来源:张玲玲
  • 本题答案
    查看答案
本试题 “已知向量a=(3,0),b=(0,1),若a-λb与2a+b共线,则实数λ的值为A.1B.-1C.D.-” 主要考查您对

向量共线的充要条件及坐标表示

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 向量共线的充要条件及坐标表示

向量共线的充要条件:

向量共线,当且仅当有唯一一个实数λ,使得

向量共线的几何表示:

,其中,当且仅当时,向量共线。


向量共线(平行)基本定理的理解:

(1)对于向量aa≠0),b,如果有一个实数λ,使得ba,那么由向量数乘的定义知,ab共线.
(2)反过来,已知向量ab共线,a≠0,且向量b的长度是向量a的长度的μ倍,即|b|=μ|a|,那么当ab同方向时,有b=μa;当ab反方向时,有b=-μa.
(3)向量平行与直线平行是有区别的,直线平行不包括重合.
(4)判断a(a≠0)b是否共线时,关键是寻找a前面的系数,如果系数有且只有一个,说明共线;如果找不到满足条件的系数,则这两个向量不共线.
(5)如果a=b=0,则数λ仍然存在,且此时λ并不唯一,是任意数值.