返回

高中数学

首页
  • 填空题
    若复数z满足iz=2+3i(i是虚数单位),则z=______.
    本题信息:数学填空题难度一般 来源:未知
  • 本题答案
    查看答案
本试题 “若复数z满足iz=2+3i(i是虚数单位),则z=______.” 主要考查您对

复数相等的充要条件

复数的四则运算

等考点的理解。关于这些考点您可以点击下面的选项卡查看详细档案。
  • 复数相等的充要条件
  • 复数的四则运算

两个复数相等的定义:

如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+dia=c,b=d。特殊地,a,b∈R时,a+bi=0a=0,b=0.
复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。


复数相等特别提醒:

一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。

解复数相等问题的方法步骤:

(1)把给的复数化成复数的标准形式;
(2)根据复数相等的充要条件解之。


复数的运算:

1、复数z1与z2的和的定义:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i;
2、复数z1与z2的差的定义:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i;
3、复数的乘法运算规则:设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i,其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把i2换成-1,并且把实部与虚部分别合并,两个复数的积仍然是一个复数。
4、复数的除法运算规则:

复数加法的几何意义:

为邻边画平行四边形就是复数对应的向量。

复数减法的几何意义:
复数减法是加法的逆运算,设,则这两个复数的差对应,这就是复数减法的几何意义。
 
共轭复数:

当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数。
虚部不等于0的两个共轭复数也叫做共轭虚数。
复数z=a+bi和=a-bi(a、b∈R)互为共轭复数。


复数的运算律:

1、复数的加法运算满足交换律:z1+z2=z2+z1
结合律:(z1+z2)+z3=z1+(z2+z3);
2、减法同加法一样满足交换律、结合律。
3、乘法运算律:(1)z1(z2z3)=(z1z2)z3;(2)z1(z2+z3)=z1z2+z1z3;(3)z1(z2+z3)=z1z2+z1z3


共轭复数的性质: